Krein Spaces in de Sitter Quantum Theories

Experimental evidences and theoretical motivations lead to consider the curved space-time relativity based on the de Sitter group SO0(1,4) or Sp(2,2) as an appealing substitute to the flat space-time Poincaré relativity. Quantum elementary systems are then associated to unitary irreducible represent...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Gazeau, J.P., Siegl, P., Youssef, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2010
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146149
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Krein Spaces in de Sitter Quantum Theories / J.P. Gazeau, P. Siegl, A. Youssef // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 31 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146149
record_format dspace
spelling irk-123456789-1461492019-02-08T01:24:05Z Krein Spaces in de Sitter Quantum Theories Gazeau, J.P. Siegl, P. Youssef, A. Experimental evidences and theoretical motivations lead to consider the curved space-time relativity based on the de Sitter group SO0(1,4) or Sp(2,2) as an appealing substitute to the flat space-time Poincaré relativity. Quantum elementary systems are then associated to unitary irreducible representations of that simple Lie group. At the lowest limit of the discrete series lies a remarkable family of scalar representations involving Krein structures and related undecomposable representation cohomology which deserves to be thoroughly studied in view of quantization of the corresponding carrier fields. The purpose of this note is to present the mathematical material needed to examine the problem and to indicate possible extensions of an exemplary case, namely the so-called de Sitterian massless minimally coupled field, i.e. a scalar field in de Sitter space-time which does not couple to the Ricci curvature. 2010 Article Krein Spaces in de Sitter Quantum Theories / J.P. Gazeau, P. Siegl, A. Youssef // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 31 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 81T20; 81R05; 81R20; 22E70; 20C35 http://dspace.nbuv.gov.ua/handle/123456789/146149 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Experimental evidences and theoretical motivations lead to consider the curved space-time relativity based on the de Sitter group SO0(1,4) or Sp(2,2) as an appealing substitute to the flat space-time Poincaré relativity. Quantum elementary systems are then associated to unitary irreducible representations of that simple Lie group. At the lowest limit of the discrete series lies a remarkable family of scalar representations involving Krein structures and related undecomposable representation cohomology which deserves to be thoroughly studied in view of quantization of the corresponding carrier fields. The purpose of this note is to present the mathematical material needed to examine the problem and to indicate possible extensions of an exemplary case, namely the so-called de Sitterian massless minimally coupled field, i.e. a scalar field in de Sitter space-time which does not couple to the Ricci curvature.
format Article
author Gazeau, J.P.
Siegl, P.
Youssef, A.
spellingShingle Gazeau, J.P.
Siegl, P.
Youssef, A.
Krein Spaces in de Sitter Quantum Theories
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Gazeau, J.P.
Siegl, P.
Youssef, A.
author_sort Gazeau, J.P.
title Krein Spaces in de Sitter Quantum Theories
title_short Krein Spaces in de Sitter Quantum Theories
title_full Krein Spaces in de Sitter Quantum Theories
title_fullStr Krein Spaces in de Sitter Quantum Theories
title_full_unstemmed Krein Spaces in de Sitter Quantum Theories
title_sort krein spaces in de sitter quantum theories
publisher Інститут математики НАН України
publishDate 2010
url http://dspace.nbuv.gov.ua/handle/123456789/146149
citation_txt Krein Spaces in de Sitter Quantum Theories / J.P. Gazeau, P. Siegl, A. Youssef // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 31 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT gazeaujp kreinspacesindesitterquantumtheories
AT sieglp kreinspacesindesitterquantumtheories
AT youssefa kreinspacesindesitterquantumtheories
first_indexed 2023-05-20T17:23:57Z
last_indexed 2023-05-20T17:23:57Z
_version_ 1796153208796610560