Bäcklund Transformations for the Trigonometric Gaudin Magnet
We construct a Bäcklund transformation for the trigonometric classical Gaudin magnet starting from the Lax representation of the model. The Darboux dressing matrix obtained depends just on one set of variables because of the so-called spectrality property introduced by E. Sklyanin and V. Kuznetsov....
Збережено в:
Дата: | 2010 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2010
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146150 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Bäcklund Transformations for the Trigonometric Gaudin Magnet / O. Ragnisco, F. Zullo // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 13 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146150 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1461502019-02-08T01:24:08Z Bäcklund Transformations for the Trigonometric Gaudin Magnet Ragnisco, O. Zullo, F. We construct a Bäcklund transformation for the trigonometric classical Gaudin magnet starting from the Lax representation of the model. The Darboux dressing matrix obtained depends just on one set of variables because of the so-called spectrality property introduced by E. Sklyanin and V. Kuznetsov. In the end we mention some possibly interesting open problems. 2010 Article Bäcklund Transformations for the Trigonometric Gaudin Magnet / O. Ragnisco, F. Zullo // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 13 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 37J35; 70H06; 70H15 http://dspace.nbuv.gov.ua/handle/123456789/146150 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We construct a Bäcklund transformation for the trigonometric classical Gaudin magnet starting from the Lax representation of the model. The Darboux dressing matrix obtained depends just on one set of variables because of the so-called spectrality property introduced by E. Sklyanin and V. Kuznetsov. In the end we mention some possibly interesting open problems. |
format |
Article |
author |
Ragnisco, O. Zullo, F. |
spellingShingle |
Ragnisco, O. Zullo, F. Bäcklund Transformations for the Trigonometric Gaudin Magnet Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Ragnisco, O. Zullo, F. |
author_sort |
Ragnisco, O. |
title |
Bäcklund Transformations for the Trigonometric Gaudin Magnet |
title_short |
Bäcklund Transformations for the Trigonometric Gaudin Magnet |
title_full |
Bäcklund Transformations for the Trigonometric Gaudin Magnet |
title_fullStr |
Bäcklund Transformations for the Trigonometric Gaudin Magnet |
title_full_unstemmed |
Bäcklund Transformations for the Trigonometric Gaudin Magnet |
title_sort |
bäcklund transformations for the trigonometric gaudin magnet |
publisher |
Інститут математики НАН України |
publishDate |
2010 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146150 |
citation_txt |
Bäcklund Transformations for the Trigonometric Gaudin Magnet / O. Ragnisco, F. Zullo // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 13 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT ragniscoo backlundtransformationsforthetrigonometricgaudinmagnet AT zullof backlundtransformationsforthetrigonometricgaudinmagnet |
first_indexed |
2023-05-20T17:23:57Z |
last_indexed |
2023-05-20T17:23:57Z |
_version_ |
1796153208902516736 |