Anharmonic Oscillators with Infinitely Many Real Eigenvalues and PT-Symmetry
We study the eigenvalue problem −u''+V(z)u=λu in the complex plane with the boundary condition that u(z) decays to zero as z tends to infinity along the two rays arg z=−π/2± 2π/(m+2), where V(z)=−(iz)m−P(iz) for complex-valued polynomials P of degree at most m−1≥2. We provide an asymptotic...
Збережено в:
Дата: | 2010 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2010
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146153 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Anharmonic Oscillators with Infinitely Many Real Eigenvalues and PT-Symmetry / K.C. Shin // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 13 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146153 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1461532019-02-08T01:24:13Z Anharmonic Oscillators with Infinitely Many Real Eigenvalues and PT-Symmetry Shin, K.C. We study the eigenvalue problem −u''+V(z)u=λu in the complex plane with the boundary condition that u(z) decays to zero as z tends to infinity along the two rays arg z=−π/2± 2π/(m+2), where V(z)=−(iz)m−P(iz) for complex-valued polynomials P of degree at most m−1≥2. We provide an asymptotic formula for eigenvalues and a necessary and sufficient condition for the anharmonic oscillator to have infinitely many real eigenvalues. 2010 Article Anharmonic Oscillators with Infinitely Many Real Eigenvalues and PT-Symmetry / K.C. Shin // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 13 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 34L20; 34L40 http://dspace.nbuv.gov.ua/handle/123456789/146153 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We study the eigenvalue problem −u''+V(z)u=λu in the complex plane with the boundary condition that u(z) decays to zero as z tends to infinity along the two rays arg z=−π/2± 2π/(m+2), where V(z)=−(iz)m−P(iz) for complex-valued polynomials P of degree at most m−1≥2. We provide an asymptotic formula for eigenvalues and a necessary and sufficient condition for the anharmonic oscillator to have infinitely many real eigenvalues. |
format |
Article |
author |
Shin, K.C. |
spellingShingle |
Shin, K.C. Anharmonic Oscillators with Infinitely Many Real Eigenvalues and PT-Symmetry Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Shin, K.C. |
author_sort |
Shin, K.C. |
title |
Anharmonic Oscillators with Infinitely Many Real Eigenvalues and PT-Symmetry |
title_short |
Anharmonic Oscillators with Infinitely Many Real Eigenvalues and PT-Symmetry |
title_full |
Anharmonic Oscillators with Infinitely Many Real Eigenvalues and PT-Symmetry |
title_fullStr |
Anharmonic Oscillators with Infinitely Many Real Eigenvalues and PT-Symmetry |
title_full_unstemmed |
Anharmonic Oscillators with Infinitely Many Real Eigenvalues and PT-Symmetry |
title_sort |
anharmonic oscillators with infinitely many real eigenvalues and pt-symmetry |
publisher |
Інститут математики НАН України |
publishDate |
2010 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146153 |
citation_txt |
Anharmonic Oscillators with Infinitely Many Real Eigenvalues and PT-Symmetry / K.C. Shin // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 13 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT shinkc anharmonicoscillatorswithinfinitelymanyrealeigenvaluesandptsymmetry |
first_indexed |
2023-05-20T17:23:58Z |
last_indexed |
2023-05-20T17:23:58Z |
_version_ |
1796153209218138112 |