On Transitive Systems of Subspaces in a Hilbert Space

Methods of *-representations in Hilbert space are applied to study of systems of n subspaces in a linear space. It is proved that the problem of description of n-transitive subspaces in a finite-dimensional linear space is *-wild for n ≥ 5.

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Moskaleva, Y.P., Samoilenko, Y.S.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2006
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146166
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On Transitive Systems of Subspaces in a Hilbert Space / Y.P. Moskaleva, Y.S. Samoilenko // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146166
record_format dspace
spelling irk-123456789-1461662019-02-08T01:24:17Z On Transitive Systems of Subspaces in a Hilbert Space Moskaleva, Y.P. Samoilenko, Y.S. Methods of *-representations in Hilbert space are applied to study of systems of n subspaces in a linear space. It is proved that the problem of description of n-transitive subspaces in a finite-dimensional linear space is *-wild for n ≥ 5. 2006 Article On Transitive Systems of Subspaces in a Hilbert Space / Y.P. Moskaleva, Y.S. Samoilenko // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 12 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 47A62; 16G20 http://dspace.nbuv.gov.ua/handle/123456789/146166 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Methods of *-representations in Hilbert space are applied to study of systems of n subspaces in a linear space. It is proved that the problem of description of n-transitive subspaces in a finite-dimensional linear space is *-wild for n ≥ 5.
format Article
author Moskaleva, Y.P.
Samoilenko, Y.S.
spellingShingle Moskaleva, Y.P.
Samoilenko, Y.S.
On Transitive Systems of Subspaces in a Hilbert Space
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Moskaleva, Y.P.
Samoilenko, Y.S.
author_sort Moskaleva, Y.P.
title On Transitive Systems of Subspaces in a Hilbert Space
title_short On Transitive Systems of Subspaces in a Hilbert Space
title_full On Transitive Systems of Subspaces in a Hilbert Space
title_fullStr On Transitive Systems of Subspaces in a Hilbert Space
title_full_unstemmed On Transitive Systems of Subspaces in a Hilbert Space
title_sort on transitive systems of subspaces in a hilbert space
publisher Інститут математики НАН України
publishDate 2006
url http://dspace.nbuv.gov.ua/handle/123456789/146166
citation_txt On Transitive Systems of Subspaces in a Hilbert Space / Y.P. Moskaleva, Y.S. Samoilenko // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 12 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT moskalevayp ontransitivesystemsofsubspacesinahilbertspace
AT samoilenkoys ontransitivesystemsofsubspacesinahilbertspace
first_indexed 2023-05-20T17:24:00Z
last_indexed 2023-05-20T17:24:00Z
_version_ 1796153207000399872