On the Existence of Configurations of Subspaces in a Hilbert Space with Fixed Angles

For a class of *-algebras, where *-algebra AΓ,τ is generated by projections associated with vertices of graph Γ and depends on a parameter τ (0 < τ ≤ 1), we study the sets ΣΓ of values of τ such that the algebras AΓ,τ have nontrivial *-representations, by using the theory of spectra of graphs. In...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Popova, N.D., Samoilenko, Y.S.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2006
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146167
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the Existence of Configurations of Subspaces in a Hilbert Space with Fixed Angles / N.D. Popova, Y.S. Samoilenko // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:For a class of *-algebras, where *-algebra AΓ,τ is generated by projections associated with vertices of graph Γ and depends on a parameter τ (0 < τ ≤ 1), we study the sets ΣΓ of values of τ such that the algebras AΓ,τ have nontrivial *-representations, by using the theory of spectra of graphs. In other words, we study such values of τ that the corresponding configurations of subspaces in a Hilbert space exist.