On the Existence of Configurations of Subspaces in a Hilbert Space with Fixed Angles
For a class of *-algebras, where *-algebra AΓ,τ is generated by projections associated with vertices of graph Γ and depends on a parameter τ (0 < τ ≤ 1), we study the sets ΣΓ of values of τ such that the algebras AΓ,τ have nontrivial *-representations, by using the theory of spectra of graphs. In...
Збережено в:
Дата: | 2006 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2006
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146167 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On the Existence of Configurations of Subspaces in a Hilbert Space with Fixed Angles / N.D. Popova, Y.S. Samoilenko // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 9 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | For a class of *-algebras, where *-algebra AΓ,τ is generated by projections associated with vertices of graph Γ and depends on a parameter τ (0 < τ ≤ 1), we study the sets ΣΓ of values of τ such that the algebras AΓ,τ have nontrivial *-representations, by using the theory of spectra of graphs. In other words, we study such values of τ that the corresponding configurations of subspaces in a Hilbert space exist. |
---|