On One Approach to Investigation of Mechanical System

The paper presents some results of qualitative analysis of Kirchhoff's differential equations describing motion of a rigid body in ideal fluid in Sokolov's case. The research methods are based on Lyapunov's classical results. Methods of computer algebra implemented in the computer alg...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Irtegov, V.D., Titorenko, T.N.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2006
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146175
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On One Approach to Investigation of Mechanical System / V.D. Irtegov, T.N. Titorenko // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146175
record_format dspace
spelling irk-123456789-1461752019-02-08T01:24:18Z On One Approach to Investigation of Mechanical System Irtegov, V.D. Titorenko, T.N. The paper presents some results of qualitative analysis of Kirchhoff's differential equations describing motion of a rigid body in ideal fluid in Sokolov's case. The research methods are based on Lyapunov's classical results. Methods of computer algebra implemented in the computer algebra system (CAS) "Mathematica" were also used. Combination of these methods allowed us to obtain rather detailed information on qualitative properties for some classes of solutions of the equations. 2006 Article On One Approach to Investigation of Mechanical System / V.D. Irtegov, T.N. Titorenko // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 13 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 37N05; 34D20; 68W30 http://dspace.nbuv.gov.ua/handle/123456789/146175 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The paper presents some results of qualitative analysis of Kirchhoff's differential equations describing motion of a rigid body in ideal fluid in Sokolov's case. The research methods are based on Lyapunov's classical results. Methods of computer algebra implemented in the computer algebra system (CAS) "Mathematica" were also used. Combination of these methods allowed us to obtain rather detailed information on qualitative properties for some classes of solutions of the equations.
format Article
author Irtegov, V.D.
Titorenko, T.N.
spellingShingle Irtegov, V.D.
Titorenko, T.N.
On One Approach to Investigation of Mechanical System
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Irtegov, V.D.
Titorenko, T.N.
author_sort Irtegov, V.D.
title On One Approach to Investigation of Mechanical System
title_short On One Approach to Investigation of Mechanical System
title_full On One Approach to Investigation of Mechanical System
title_fullStr On One Approach to Investigation of Mechanical System
title_full_unstemmed On One Approach to Investigation of Mechanical System
title_sort on one approach to investigation of mechanical system
publisher Інститут математики НАН України
publishDate 2006
url http://dspace.nbuv.gov.ua/handle/123456789/146175
citation_txt On One Approach to Investigation of Mechanical System / V.D. Irtegov, T.N. Titorenko // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 13 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT irtegovvd ononeapproachtoinvestigationofmechanicalsystem
AT titorenkotn ononeapproachtoinvestigationofmechanicalsystem
first_indexed 2023-05-20T17:24:02Z
last_indexed 2023-05-20T17:24:02Z
_version_ 1796153207954604032