On the Generalized Maxwell-Bloch Equations
A new Hamiltonian structure of the Maxwell-Bloch equations is described. In this setting the Maxwell-Bloch equations appear as a member of a family of generalized Maxwell-Bloch systems. The family is parameterized by compact semi-simple Lie groups, the original Maxwell-Bloch system being the member...
Збережено в:
Дата: | 2006 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2006
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146179 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On the Generalized Maxwell-Bloch Equations / P. Saksida // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 21 назв. — англ. |
Репозиторії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146179 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1461792019-02-08T01:23:59Z On the Generalized Maxwell-Bloch Equations Saksida, P. A new Hamiltonian structure of the Maxwell-Bloch equations is described. In this setting the Maxwell-Bloch equations appear as a member of a family of generalized Maxwell-Bloch systems. The family is parameterized by compact semi-simple Lie groups, the original Maxwell-Bloch system being the member corresponding to SU(2). The Hamiltonian structure is then used in the construction of a new family of symmetries and the associated conserved quantities of the Maxwell-Bloch equations. 2006 Article On the Generalized Maxwell-Bloch Equations / P. Saksida // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 21 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 37K05; 35Q60; 37K30; 35Q58; 53D20 http://dspace.nbuv.gov.ua/handle/123456789/146179 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A new Hamiltonian structure of the Maxwell-Bloch equations is described. In this setting the Maxwell-Bloch equations appear as a member of a family of generalized Maxwell-Bloch systems. The family is parameterized by compact semi-simple Lie groups, the original Maxwell-Bloch system being the member corresponding to SU(2). The Hamiltonian structure is then used in the construction of a new family of symmetries and the associated conserved quantities of the Maxwell-Bloch equations. |
format |
Article |
author |
Saksida, P. |
spellingShingle |
Saksida, P. On the Generalized Maxwell-Bloch Equations Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Saksida, P. |
author_sort |
Saksida, P. |
title |
On the Generalized Maxwell-Bloch Equations |
title_short |
On the Generalized Maxwell-Bloch Equations |
title_full |
On the Generalized Maxwell-Bloch Equations |
title_fullStr |
On the Generalized Maxwell-Bloch Equations |
title_full_unstemmed |
On the Generalized Maxwell-Bloch Equations |
title_sort |
on the generalized maxwell-bloch equations |
publisher |
Інститут математики НАН України |
publishDate |
2006 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146179 |
citation_txt |
On the Generalized Maxwell-Bloch Equations / P. Saksida // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 21 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT saksidap onthegeneralizedmaxwellblochequations |
first_indexed |
2023-05-20T17:24:02Z |
last_indexed |
2023-05-20T17:24:02Z |
_version_ |
1796153209638617088 |