On the Generalized Maxwell-Bloch Equations

A new Hamiltonian structure of the Maxwell-Bloch equations is described. In this setting the Maxwell-Bloch equations appear as a member of a family of generalized Maxwell-Bloch systems. The family is parameterized by compact semi-simple Lie groups, the original Maxwell-Bloch system being the member...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автор: Saksida, P.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2006
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146179
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the Generalized Maxwell-Bloch Equations / P. Saksida // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 21 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146179
record_format dspace
spelling irk-123456789-1461792019-02-08T01:23:59Z On the Generalized Maxwell-Bloch Equations Saksida, P. A new Hamiltonian structure of the Maxwell-Bloch equations is described. In this setting the Maxwell-Bloch equations appear as a member of a family of generalized Maxwell-Bloch systems. The family is parameterized by compact semi-simple Lie groups, the original Maxwell-Bloch system being the member corresponding to SU(2). The Hamiltonian structure is then used in the construction of a new family of symmetries and the associated conserved quantities of the Maxwell-Bloch equations. 2006 Article On the Generalized Maxwell-Bloch Equations / P. Saksida // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 21 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 37K05; 35Q60; 37K30; 35Q58; 53D20 http://dspace.nbuv.gov.ua/handle/123456789/146179 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A new Hamiltonian structure of the Maxwell-Bloch equations is described. In this setting the Maxwell-Bloch equations appear as a member of a family of generalized Maxwell-Bloch systems. The family is parameterized by compact semi-simple Lie groups, the original Maxwell-Bloch system being the member corresponding to SU(2). The Hamiltonian structure is then used in the construction of a new family of symmetries and the associated conserved quantities of the Maxwell-Bloch equations.
format Article
author Saksida, P.
spellingShingle Saksida, P.
On the Generalized Maxwell-Bloch Equations
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Saksida, P.
author_sort Saksida, P.
title On the Generalized Maxwell-Bloch Equations
title_short On the Generalized Maxwell-Bloch Equations
title_full On the Generalized Maxwell-Bloch Equations
title_fullStr On the Generalized Maxwell-Bloch Equations
title_full_unstemmed On the Generalized Maxwell-Bloch Equations
title_sort on the generalized maxwell-bloch equations
publisher Інститут математики НАН України
publishDate 2006
url http://dspace.nbuv.gov.ua/handle/123456789/146179
citation_txt On the Generalized Maxwell-Bloch Equations / P. Saksida // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 21 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT saksidap onthegeneralizedmaxwellblochequations
first_indexed 2023-05-20T17:24:02Z
last_indexed 2023-05-20T17:24:02Z
_version_ 1796153209638617088