Hamiltonian Flows of Curves in G/SO(N) and Vector Soliton Equations of mKdV and Sine-Gordon Type
The bi-Hamiltonian structure of the two known vector generalizations of the mKdV hierarchy of soliton equations is derived in a geometrical fashion from flows of non-stretching curves in Riemannian symmetric spaces G/SO(N). These spaces are exhausted by the Lie groups G = SO(N+1),SU(N). The derivati...
Збережено в:
Дата: | 2006 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2006
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146182 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Hamiltonian Flows of Curves in G/SO(N) and Vector Soliton Equations of mKdV and Sine-Gordon Type / S.C. Anco // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 30 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146182 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1461822019-02-08T01:24:00Z Hamiltonian Flows of Curves in G/SO(N) and Vector Soliton Equations of mKdV and Sine-Gordon Type Anco, S.C. The bi-Hamiltonian structure of the two known vector generalizations of the mKdV hierarchy of soliton equations is derived in a geometrical fashion from flows of non-stretching curves in Riemannian symmetric spaces G/SO(N). These spaces are exhausted by the Lie groups G = SO(N+1),SU(N). The derivation of the bi-Hamiltonian structure uses a parallel frame and connection along the curve, tied to a zero curvature Maurer-Cartan form on G, and this yields the mKdV recursion operators in a geometric vectorial form. The kernel of these recursion operators is shown to yield two hyperbolic vector generalizations of the sine-Gordon equation. The corresponding geometric curve flows in the hierarchies are described in an explicit form, given by wave map equations and mKdV analogs of Schrödinger map equations. 2006 Article Hamiltonian Flows of Curves in G/SO(N) and Vector Soliton Equations of mKdV and Sine-Gordon Type / S.C. Anco // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 30 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 37K05; 37K10; 37K25; 35Q53; 53C35 http://dspace.nbuv.gov.ua/handle/123456789/146182 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The bi-Hamiltonian structure of the two known vector generalizations of the mKdV hierarchy of soliton equations is derived in a geometrical fashion from flows of non-stretching curves in Riemannian symmetric spaces G/SO(N). These spaces are exhausted by the Lie groups G = SO(N+1),SU(N). The derivation of the bi-Hamiltonian structure uses a parallel frame and connection along the curve, tied to a zero curvature Maurer-Cartan form on G, and this yields the mKdV recursion operators in a geometric vectorial form. The kernel of these recursion operators is shown to yield two hyperbolic vector generalizations of the sine-Gordon equation. The corresponding geometric curve flows in the hierarchies are described in an explicit form, given by wave map equations and mKdV analogs of Schrödinger map equations. |
format |
Article |
author |
Anco, S.C. |
spellingShingle |
Anco, S.C. Hamiltonian Flows of Curves in G/SO(N) and Vector Soliton Equations of mKdV and Sine-Gordon Type Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Anco, S.C. |
author_sort |
Anco, S.C. |
title |
Hamiltonian Flows of Curves in G/SO(N) and Vector Soliton Equations of mKdV and Sine-Gordon Type |
title_short |
Hamiltonian Flows of Curves in G/SO(N) and Vector Soliton Equations of mKdV and Sine-Gordon Type |
title_full |
Hamiltonian Flows of Curves in G/SO(N) and Vector Soliton Equations of mKdV and Sine-Gordon Type |
title_fullStr |
Hamiltonian Flows of Curves in G/SO(N) and Vector Soliton Equations of mKdV and Sine-Gordon Type |
title_full_unstemmed |
Hamiltonian Flows of Curves in G/SO(N) and Vector Soliton Equations of mKdV and Sine-Gordon Type |
title_sort |
hamiltonian flows of curves in g/so(n) and vector soliton equations of mkdv and sine-gordon type |
publisher |
Інститут математики НАН України |
publishDate |
2006 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146182 |
citation_txt |
Hamiltonian Flows of Curves in G/SO(N) and Vector Soliton Equations of mKdV and Sine-Gordon Type / S.C. Anco // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 30 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT ancosc hamiltonianflowsofcurvesingsonandvectorsolitonequationsofmkdvandsinegordontype |
first_indexed |
2023-05-20T17:24:03Z |
last_indexed |
2023-05-20T17:24:03Z |
_version_ |
1796153208586895360 |