Geodesic Reduction via Frame Bundle Geometry

A manifold with an arbitrary affine connection is considered and the geodesic spray associated with the connection is studied in the presence of a Lie group action. In particular, results are obtained that provide insight into the structure of the reduced dynamics associated with the given invariant...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автор: Bhand, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2010
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146313
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Geodesic Reduction via Frame Bundle Geometry / A. Bhand // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 22 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146313
record_format dspace
spelling irk-123456789-1463132019-02-09T01:25:03Z Geodesic Reduction via Frame Bundle Geometry Bhand, A. A manifold with an arbitrary affine connection is considered and the geodesic spray associated with the connection is studied in the presence of a Lie group action. In particular, results are obtained that provide insight into the structure of the reduced dynamics associated with the given invariant affine connection. The geometry of the frame bundle of the given manifold is used to provide an intrinsic description of the geodesic spray. A fundamental relationship between the geodesic spray, the tangent lift and the vertical lift of the symmetric product is obtained, which provides a key to understanding reduction in this formulation. 2010 Article Geodesic Reduction via Frame Bundle Geometry / A. Bhand // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 22 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53B05; 53C05; 53C22; 58D19 DOI:10.3842/SIGMA.2010.020 http://dspace.nbuv.gov.ua/handle/123456789/146313 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A manifold with an arbitrary affine connection is considered and the geodesic spray associated with the connection is studied in the presence of a Lie group action. In particular, results are obtained that provide insight into the structure of the reduced dynamics associated with the given invariant affine connection. The geometry of the frame bundle of the given manifold is used to provide an intrinsic description of the geodesic spray. A fundamental relationship between the geodesic spray, the tangent lift and the vertical lift of the symmetric product is obtained, which provides a key to understanding reduction in this formulation.
format Article
author Bhand, A.
spellingShingle Bhand, A.
Geodesic Reduction via Frame Bundle Geometry
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Bhand, A.
author_sort Bhand, A.
title Geodesic Reduction via Frame Bundle Geometry
title_short Geodesic Reduction via Frame Bundle Geometry
title_full Geodesic Reduction via Frame Bundle Geometry
title_fullStr Geodesic Reduction via Frame Bundle Geometry
title_full_unstemmed Geodesic Reduction via Frame Bundle Geometry
title_sort geodesic reduction via frame bundle geometry
publisher Інститут математики НАН України
publishDate 2010
url http://dspace.nbuv.gov.ua/handle/123456789/146313
citation_txt Geodesic Reduction via Frame Bundle Geometry / A. Bhand // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 22 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT bhanda geodesicreductionviaframebundlegeometry
first_indexed 2023-05-20T17:24:05Z
last_indexed 2023-05-20T17:24:05Z
_version_ 1796153213989158912