2025-02-23T11:16:41-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-146314%22&qt=morelikethis&rows=5
2025-02-23T11:16:41-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-146314%22&qt=morelikethis&rows=5
2025-02-23T11:16:41-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T11:16:41-05:00 DEBUG: Deserialized SOLR response
On the Existence of a Codimension 1 Completely Integrable Totally Geodesic Distribution on a Pseudo-Riemannian Heisenberg Group
In this note we prove that the Heisenberg group with a left-invariant pseudo-Riemannian metric admits a completely integrable totally geodesic distribution of codimension 1. This is on the contrary to the Riemannian case, as it was proved by T. Hangan.
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2010
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/146314 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
irk-123456789-146314 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1463142019-02-09T01:24:43Z On the Existence of a Codimension 1 Completely Integrable Totally Geodesic Distribution on a Pseudo-Riemannian Heisenberg Group Batat, W. Rahmani, S. In this note we prove that the Heisenberg group with a left-invariant pseudo-Riemannian metric admits a completely integrable totally geodesic distribution of codimension 1. This is on the contrary to the Riemannian case, as it was proved by T. Hangan. 2010 Article On the Existence of a Codimension 1 Completely Integrable Totally Geodesic Distribution on a Pseudo-Riemannian Heisenberg Group / W. Batat, S. Rahmani // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 9 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 58A30; 53C15; 53C30 DOI:10.3842/SIGMA.2010.021 http://dspace.nbuv.gov.ua/handle/123456789/146314 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In this note we prove that the Heisenberg group with a left-invariant pseudo-Riemannian metric admits a completely integrable totally geodesic distribution of codimension 1. This is on the contrary to the Riemannian case, as it was proved by T. Hangan. |
format |
Article |
author |
Batat, W. Rahmani, S. |
spellingShingle |
Batat, W. Rahmani, S. On the Existence of a Codimension 1 Completely Integrable Totally Geodesic Distribution on a Pseudo-Riemannian Heisenberg Group Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Batat, W. Rahmani, S. |
author_sort |
Batat, W. |
title |
On the Existence of a Codimension 1 Completely Integrable Totally Geodesic Distribution on a Pseudo-Riemannian Heisenberg Group |
title_short |
On the Existence of a Codimension 1 Completely Integrable Totally Geodesic Distribution on a Pseudo-Riemannian Heisenberg Group |
title_full |
On the Existence of a Codimension 1 Completely Integrable Totally Geodesic Distribution on a Pseudo-Riemannian Heisenberg Group |
title_fullStr |
On the Existence of a Codimension 1 Completely Integrable Totally Geodesic Distribution on a Pseudo-Riemannian Heisenberg Group |
title_full_unstemmed |
On the Existence of a Codimension 1 Completely Integrable Totally Geodesic Distribution on a Pseudo-Riemannian Heisenberg Group |
title_sort |
on the existence of a codimension 1 completely integrable totally geodesic distribution on a pseudo-riemannian heisenberg group |
publisher |
Інститут математики НАН України |
publishDate |
2010 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146314 |
citation_txt |
On the Existence of a Codimension 1 Completely Integrable Totally Geodesic Distribution on a Pseudo-Riemannian Heisenberg Group / W. Batat, S. Rahmani // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 9 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT batatw ontheexistenceofacodimension1completelyintegrabletotallygeodesicdistributiononapseudoriemannianheisenberggroup AT rahmanis ontheexistenceofacodimension1completelyintegrabletotallygeodesicdistributiononapseudoriemannianheisenberggroup |
first_indexed |
2023-05-20T17:24:05Z |
last_indexed |
2023-05-20T17:24:05Z |
_version_ |
1796153214094016512 |