Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring
We present a study of the two species totally asymmetric diffusion model using the Bethe ansatz. The Hamiltonian has Uq(SU(3)) symmetry. We derive the nested Bethe ansatz equations and obtain the dynamical critical exponent from the finite-size scaling properties of the eigenvalue with the smallest...
Збережено в:
Дата: | 2010 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2010
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146319 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring / B. Wehefritz-Kaufmann // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 38 назв. — англ. |
Репозиторії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146319 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1463192019-02-09T01:23:37Z Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring Wehefritz-Kaufmann, B. We present a study of the two species totally asymmetric diffusion model using the Bethe ansatz. The Hamiltonian has Uq(SU(3)) symmetry. We derive the nested Bethe ansatz equations and obtain the dynamical critical exponent from the finite-size scaling properties of the eigenvalue with the smallest real part. The dynamical critical exponent is 3/2 which is the exponent corresponding to KPZ growth in the single species asymmetric diffusion model. 2010 Article Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring / B. Wehefritz-Kaufmann // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 38 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 82C27; 82B20 DOI:10.3842/SIGMA.2010.039 http://dspace.nbuv.gov.ua/handle/123456789/146319 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We present a study of the two species totally asymmetric diffusion model using the Bethe ansatz. The Hamiltonian has Uq(SU(3)) symmetry. We derive the nested Bethe ansatz equations and obtain the dynamical critical exponent from the finite-size scaling properties of the eigenvalue with the smallest real part. The dynamical critical exponent is 3/2 which is the exponent corresponding to KPZ growth in the single species asymmetric diffusion model. |
format |
Article |
author |
Wehefritz-Kaufmann, B. |
spellingShingle |
Wehefritz-Kaufmann, B. Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Wehefritz-Kaufmann, B. |
author_sort |
Wehefritz-Kaufmann, B. |
title |
Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring |
title_short |
Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring |
title_full |
Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring |
title_fullStr |
Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring |
title_full_unstemmed |
Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring |
title_sort |
dynamical critical exponent for two-species totally asymmetric diffusion on a ring |
publisher |
Інститут математики НАН України |
publishDate |
2010 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146319 |
citation_txt |
Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring / B. Wehefritz-Kaufmann // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 38 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT wehefritzkaufmannb dynamicalcriticalexponentfortwospeciestotallyasymmetricdiffusiononaring |
first_indexed |
2023-05-20T17:24:17Z |
last_indexed |
2023-05-20T17:24:17Z |
_version_ |
1796153214515544064 |