Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring

We present a study of the two species totally asymmetric diffusion model using the Bethe ansatz. The Hamiltonian has Uq(SU(3)) symmetry. We derive the nested Bethe ansatz equations and obtain the dynamical critical exponent from the finite-size scaling properties of the eigenvalue with the smallest...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автор: Wehefritz-Kaufmann, B.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2010
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146319
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring / B. Wehefritz-Kaufmann // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 38 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146319
record_format dspace
spelling irk-123456789-1463192019-02-09T01:23:37Z Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring Wehefritz-Kaufmann, B. We present a study of the two species totally asymmetric diffusion model using the Bethe ansatz. The Hamiltonian has Uq(SU(3)) symmetry. We derive the nested Bethe ansatz equations and obtain the dynamical critical exponent from the finite-size scaling properties of the eigenvalue with the smallest real part. The dynamical critical exponent is 3/2 which is the exponent corresponding to KPZ growth in the single species asymmetric diffusion model. 2010 Article Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring / B. Wehefritz-Kaufmann // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 38 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 82C27; 82B20 DOI:10.3842/SIGMA.2010.039 http://dspace.nbuv.gov.ua/handle/123456789/146319 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We present a study of the two species totally asymmetric diffusion model using the Bethe ansatz. The Hamiltonian has Uq(SU(3)) symmetry. We derive the nested Bethe ansatz equations and obtain the dynamical critical exponent from the finite-size scaling properties of the eigenvalue with the smallest real part. The dynamical critical exponent is 3/2 which is the exponent corresponding to KPZ growth in the single species asymmetric diffusion model.
format Article
author Wehefritz-Kaufmann, B.
spellingShingle Wehefritz-Kaufmann, B.
Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Wehefritz-Kaufmann, B.
author_sort Wehefritz-Kaufmann, B.
title Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring
title_short Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring
title_full Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring
title_fullStr Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring
title_full_unstemmed Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring
title_sort dynamical critical exponent for two-species totally asymmetric diffusion on a ring
publisher Інститут математики НАН України
publishDate 2010
url http://dspace.nbuv.gov.ua/handle/123456789/146319
citation_txt Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring / B. Wehefritz-Kaufmann // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 38 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT wehefritzkaufmannb dynamicalcriticalexponentfortwospeciestotallyasymmetricdiffusiononaring
first_indexed 2023-05-20T17:24:17Z
last_indexed 2023-05-20T17:24:17Z
_version_ 1796153214515544064