Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring

We present a study of the two species totally asymmetric diffusion model using the Bethe ansatz. The Hamiltonian has Uq(SU(3)) symmetry. We derive the nested Bethe ansatz equations and obtain the dynamical critical exponent from the finite-size scaling properties of the eigenvalue with the smallest...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автор: Wehefritz-Kaufmann, B.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2010
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146319
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring / B. Wehefritz-Kaufmann // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 38 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine