Spectral Distances: Results for Moyal Plane and Noncommutative Torus

The spectral distance for noncommutative Moyal planes is considered in the framework of a non compact spectral triple recently proposed as a possible noncommutative analog of non compact Riemannian spin manifold. An explicit formula for the distance between any two elements of a particular class of...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Cagnache, E., Wallet, J.C.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2010
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146321
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Spectral Distances: Results for Moyal Plane and Noncommutative Torus / E. Cagnache, J.C. Wallet // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 28 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146321
record_format dspace
spelling irk-123456789-1463212019-02-09T01:23:44Z Spectral Distances: Results for Moyal Plane and Noncommutative Torus Cagnache, E. Wallet, J.C. The spectral distance for noncommutative Moyal planes is considered in the framework of a non compact spectral triple recently proposed as a possible noncommutative analog of non compact Riemannian spin manifold. An explicit formula for the distance between any two elements of a particular class of pure states can be determined. The corresponding result is discussed. The existence of some pure states at infinite distance signals that the topology of the spectral distance on the space of states is not the weak * topology. The case of the noncommutative torus is also considered and a formula for the spectral distance between some states is also obtained. 2010 Article Spectral Distances: Results for Moyal Plane and Noncommutative Torus / E. Cagnache, J.C. Wallet // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 28 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 58B34; 46L52; 81T75 DOI:10.3842/SIGMA.2010.026 http://dspace.nbuv.gov.ua/handle/123456789/146321 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The spectral distance for noncommutative Moyal planes is considered in the framework of a non compact spectral triple recently proposed as a possible noncommutative analog of non compact Riemannian spin manifold. An explicit formula for the distance between any two elements of a particular class of pure states can be determined. The corresponding result is discussed. The existence of some pure states at infinite distance signals that the topology of the spectral distance on the space of states is not the weak * topology. The case of the noncommutative torus is also considered and a formula for the spectral distance between some states is also obtained.
format Article
author Cagnache, E.
Wallet, J.C.
spellingShingle Cagnache, E.
Wallet, J.C.
Spectral Distances: Results for Moyal Plane and Noncommutative Torus
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Cagnache, E.
Wallet, J.C.
author_sort Cagnache, E.
title Spectral Distances: Results for Moyal Plane and Noncommutative Torus
title_short Spectral Distances: Results for Moyal Plane and Noncommutative Torus
title_full Spectral Distances: Results for Moyal Plane and Noncommutative Torus
title_fullStr Spectral Distances: Results for Moyal Plane and Noncommutative Torus
title_full_unstemmed Spectral Distances: Results for Moyal Plane and Noncommutative Torus
title_sort spectral distances: results for moyal plane and noncommutative torus
publisher Інститут математики НАН України
publishDate 2010
url http://dspace.nbuv.gov.ua/handle/123456789/146321
citation_txt Spectral Distances: Results for Moyal Plane and Noncommutative Torus / E. Cagnache, J.C. Wallet // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 28 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT cagnachee spectraldistancesresultsformoyalplaneandnoncommutativetorus
AT walletjc spectraldistancesresultsformoyalplaneandnoncommutativetorus
first_indexed 2023-05-20T17:24:05Z
last_indexed 2023-05-20T17:24:05Z
_version_ 1796153214727356416