On Classical Dynamics of Affinely-Rigid Bodies Subject to the Kirchhoff-Love Constraints
In this article we consider the affinely-rigid body moving in the three-dimensional physical space and subject to the Kirchhoff-Love constraints, i.e., while it deforms homogeneously in the two-dimensional central plane of the body it simultaneously performs one-dimensional oscillations orthogonal t...
Збережено в:
Дата: | 2010 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2010
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146341 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On Classical Dynamics of Affinely-Rigid Bodies Subject to the Kirchhoff-Love Constraints / V. Kovalchuk // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 18 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | In this article we consider the affinely-rigid body moving in the three-dimensional physical space and subject to the Kirchhoff-Love constraints, i.e., while it deforms homogeneously in the two-dimensional central plane of the body it simultaneously performs one-dimensional oscillations orthogonal to this central plane. For the polar decomposition we obtain the stationary ellipsoids as special solutions of the general, strongly nonlinear equations of motion. It is also shown that these solutions are conceptually different from those obtained earlier for the two-polar (singular value) decomposition. |
---|