Mach-type soliton in the Novikov-Veselov equation

Using the reality condition of the solutions, one constructs the Mach-type soliton of the Novikov-Veselov equation by the minor-summation formula of the Pfaffian. We study the evolution of the Mach-type soliton and find that the amplitude of the Mach stem wave is less than two times of the one of th...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автор: Jen-Hsu Chang
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146342
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Mach-type soliton in the Novikov-Veselov equation/ Jen-Hsu Chang // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 31 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146342
record_format dspace
spelling irk-123456789-1463422019-02-10T01:24:42Z Mach-type soliton in the Novikov-Veselov equation Jen-Hsu Chang Using the reality condition of the solutions, one constructs the Mach-type soliton of the Novikov-Veselov equation by the minor-summation formula of the Pfaffian. We study the evolution of the Mach-type soliton and find that the amplitude of the Mach stem wave is less than two times of the one of the incident wave. It is shown that the length of the Mach stem wave is linear with time. One discusses the relations with V-shape initial value wave for different critical values of Miles parameter. 2014 Article Mach-type soliton in the Novikov-Veselov equation/ Jen-Hsu Chang // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 31 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 35C08; 35A22 DOI:10.3842/SIGMA.2014.111 http://dspace.nbuv.gov.ua/handle/123456789/146342 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Using the reality condition of the solutions, one constructs the Mach-type soliton of the Novikov-Veselov equation by the minor-summation formula of the Pfaffian. We study the evolution of the Mach-type soliton and find that the amplitude of the Mach stem wave is less than two times of the one of the incident wave. It is shown that the length of the Mach stem wave is linear with time. One discusses the relations with V-shape initial value wave for different critical values of Miles parameter.
format Article
author Jen-Hsu Chang
spellingShingle Jen-Hsu Chang
Mach-type soliton in the Novikov-Veselov equation
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Jen-Hsu Chang
author_sort Jen-Hsu Chang
title Mach-type soliton in the Novikov-Veselov equation
title_short Mach-type soliton in the Novikov-Veselov equation
title_full Mach-type soliton in the Novikov-Veselov equation
title_fullStr Mach-type soliton in the Novikov-Veselov equation
title_full_unstemmed Mach-type soliton in the Novikov-Veselov equation
title_sort mach-type soliton in the novikov-veselov equation
publisher Інститут математики НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/146342
citation_txt Mach-type soliton in the Novikov-Veselov equation/ Jen-Hsu Chang // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 31 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT jenhsuchang machtypesolitoninthenovikovveselovequation
first_indexed 2023-05-20T17:24:36Z
last_indexed 2023-05-20T17:24:36Z
_version_ 1796153228256083968