Mach-type soliton in the Novikov-Veselov equation
Using the reality condition of the solutions, one constructs the Mach-type soliton of the Novikov-Veselov equation by the minor-summation formula of the Pfaffian. We study the evolution of the Mach-type soliton and find that the amplitude of the Mach stem wave is less than two times of the one of th...
Збережено в:
Дата: | 2014 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2014
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146342 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Mach-type soliton in the Novikov-Veselov equation/ Jen-Hsu Chang // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 31 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146342 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1463422019-02-10T01:24:42Z Mach-type soliton in the Novikov-Veselov equation Jen-Hsu Chang Using the reality condition of the solutions, one constructs the Mach-type soliton of the Novikov-Veselov equation by the minor-summation formula of the Pfaffian. We study the evolution of the Mach-type soliton and find that the amplitude of the Mach stem wave is less than two times of the one of the incident wave. It is shown that the length of the Mach stem wave is linear with time. One discusses the relations with V-shape initial value wave for different critical values of Miles parameter. 2014 Article Mach-type soliton in the Novikov-Veselov equation/ Jen-Hsu Chang // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 31 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 35C08; 35A22 DOI:10.3842/SIGMA.2014.111 http://dspace.nbuv.gov.ua/handle/123456789/146342 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Using the reality condition of the solutions, one constructs the Mach-type soliton of the Novikov-Veselov equation by the minor-summation formula of the Pfaffian. We study the evolution of the Mach-type soliton and find that the amplitude of the Mach stem wave is less than two times of the one of the incident wave. It is shown that the length of the Mach stem wave is linear with time. One discusses the relations with V-shape initial value wave for different critical values of Miles parameter. |
format |
Article |
author |
Jen-Hsu Chang |
spellingShingle |
Jen-Hsu Chang Mach-type soliton in the Novikov-Veselov equation Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Jen-Hsu Chang |
author_sort |
Jen-Hsu Chang |
title |
Mach-type soliton in the Novikov-Veselov equation |
title_short |
Mach-type soliton in the Novikov-Veselov equation |
title_full |
Mach-type soliton in the Novikov-Veselov equation |
title_fullStr |
Mach-type soliton in the Novikov-Veselov equation |
title_full_unstemmed |
Mach-type soliton in the Novikov-Veselov equation |
title_sort |
mach-type soliton in the novikov-veselov equation |
publisher |
Інститут математики НАН України |
publishDate |
2014 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146342 |
citation_txt |
Mach-type soliton in the Novikov-Veselov equation/ Jen-Hsu Chang // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 31 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT jenhsuchang machtypesolitoninthenovikovveselovequation |
first_indexed |
2023-05-20T17:24:36Z |
last_indexed |
2023-05-20T17:24:36Z |
_version_ |
1796153228256083968 |