2025-02-23T18:50:46-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-146343%22&qt=morelikethis&rows=5
2025-02-23T18:50:46-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-146343%22&qt=morelikethis&rows=5
2025-02-23T18:50:46-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T18:50:46-05:00 DEBUG: Deserialized SOLR response

The Multitrace Matrix Model of Scalar Field Theory on Fuzzy CPⁿ

We perform a high-temperature expansion of scalar quantum field theory on fuzzy CPⁿ to third order in the inverse temperature. Using group theoretical methods, we rewrite the result as a multitrace matrix model. The partition function of this matrix model is evaluated via the saddle point method and...

Full description

Saved in:
Bibliographic Details
Main Author: Sämann, C.
Format: Article
Language:English
Published: Інститут математики НАН України 2010
Series:Symmetry, Integrability and Geometry: Methods and Applications
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/146343
Tags: Add Tag
No Tags, Be the first to tag this record!
id irk-123456789-146343
record_format dspace
spelling irk-123456789-1463432019-02-10T01:23:10Z The Multitrace Matrix Model of Scalar Field Theory on Fuzzy CPⁿ Sämann, C. We perform a high-temperature expansion of scalar quantum field theory on fuzzy CPⁿ to third order in the inverse temperature. Using group theoretical methods, we rewrite the result as a multitrace matrix model. The partition function of this matrix model is evaluated via the saddle point method and the phase diagram is analyzed for various n. Our results confirm the findings of a previous numerical study of this phase diagram for CP¹. 2010 Article The Multitrace Matrix Model of Scalar Field Theory on Fuzzy CPⁿ / C. Sämann // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 22 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 81T75 DOI:10.3842/SIGMA.2010.050 http://dspace.nbuv.gov.ua/handle/123456789/146343 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We perform a high-temperature expansion of scalar quantum field theory on fuzzy CPⁿ to third order in the inverse temperature. Using group theoretical methods, we rewrite the result as a multitrace matrix model. The partition function of this matrix model is evaluated via the saddle point method and the phase diagram is analyzed for various n. Our results confirm the findings of a previous numerical study of this phase diagram for CP¹.
format Article
author Sämann, C.
spellingShingle Sämann, C.
The Multitrace Matrix Model of Scalar Field Theory on Fuzzy CPⁿ
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Sämann, C.
author_sort Sämann, C.
title The Multitrace Matrix Model of Scalar Field Theory on Fuzzy CPⁿ
title_short The Multitrace Matrix Model of Scalar Field Theory on Fuzzy CPⁿ
title_full The Multitrace Matrix Model of Scalar Field Theory on Fuzzy CPⁿ
title_fullStr The Multitrace Matrix Model of Scalar Field Theory on Fuzzy CPⁿ
title_full_unstemmed The Multitrace Matrix Model of Scalar Field Theory on Fuzzy CPⁿ
title_sort multitrace matrix model of scalar field theory on fuzzy cpⁿ
publisher Інститут математики НАН України
publishDate 2010
url http://dspace.nbuv.gov.ua/handle/123456789/146343
citation_txt The Multitrace Matrix Model of Scalar Field Theory on Fuzzy CPⁿ / C. Sämann // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 22 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT samannc themultitracematrixmodelofscalarfieldtheoryonfuzzycpn
AT samannc multitracematrixmodelofscalarfieldtheoryonfuzzycpn
first_indexed 2023-05-20T17:24:18Z
last_indexed 2023-05-20T17:24:18Z
_version_ 1796153215776980992