The Multitrace Matrix Model of Scalar Field Theory on Fuzzy CPⁿ
We perform a high-temperature expansion of scalar quantum field theory on fuzzy CPⁿ to third order in the inverse temperature. Using group theoretical methods, we rewrite the result as a multitrace matrix model. The partition function of this matrix model is evaluated via the saddle point method and...
Збережено в:
Дата: | 2010 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2010
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146343 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | The Multitrace Matrix Model of Scalar Field Theory on Fuzzy CPⁿ / C. Sämann // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 22 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146343 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1463432019-02-10T01:23:10Z The Multitrace Matrix Model of Scalar Field Theory on Fuzzy CPⁿ Sämann, C. We perform a high-temperature expansion of scalar quantum field theory on fuzzy CPⁿ to third order in the inverse temperature. Using group theoretical methods, we rewrite the result as a multitrace matrix model. The partition function of this matrix model is evaluated via the saddle point method and the phase diagram is analyzed for various n. Our results confirm the findings of a previous numerical study of this phase diagram for CP¹. 2010 Article The Multitrace Matrix Model of Scalar Field Theory on Fuzzy CPⁿ / C. Sämann // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 22 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 81T75 DOI:10.3842/SIGMA.2010.050 http://dspace.nbuv.gov.ua/handle/123456789/146343 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We perform a high-temperature expansion of scalar quantum field theory on fuzzy CPⁿ to third order in the inverse temperature. Using group theoretical methods, we rewrite the result as a multitrace matrix model. The partition function of this matrix model is evaluated via the saddle point method and the phase diagram is analyzed for various n. Our results confirm the findings of a previous numerical study of this phase diagram for CP¹. |
format |
Article |
author |
Sämann, C. |
spellingShingle |
Sämann, C. The Multitrace Matrix Model of Scalar Field Theory on Fuzzy CPⁿ Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Sämann, C. |
author_sort |
Sämann, C. |
title |
The Multitrace Matrix Model of Scalar Field Theory on Fuzzy CPⁿ |
title_short |
The Multitrace Matrix Model of Scalar Field Theory on Fuzzy CPⁿ |
title_full |
The Multitrace Matrix Model of Scalar Field Theory on Fuzzy CPⁿ |
title_fullStr |
The Multitrace Matrix Model of Scalar Field Theory on Fuzzy CPⁿ |
title_full_unstemmed |
The Multitrace Matrix Model of Scalar Field Theory on Fuzzy CPⁿ |
title_sort |
multitrace matrix model of scalar field theory on fuzzy cpⁿ |
publisher |
Інститут математики НАН України |
publishDate |
2010 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146343 |
citation_txt |
The Multitrace Matrix Model of Scalar Field Theory on Fuzzy CPⁿ / C. Sämann // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 22 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT samannc themultitracematrixmodelofscalarfieldtheoryonfuzzycpn AT samannc multitracematrixmodelofscalarfieldtheoryonfuzzycpn |
first_indexed |
2023-05-20T17:24:18Z |
last_indexed |
2023-05-20T17:24:18Z |
_version_ |
1796153215776980992 |