A Euclidean Geometric Invariant of Framed (Un)Knots in Manifolds

We present an invariant of a three-dimensional manifold with a framed knot in it based on the Reidemeister torsion of an acyclic complex of Euclidean geometric origin. To show its nontriviality, we calculate the invariant for some framed (un)knots in lens spaces. Our invariant is related to a finite...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Dubois, J., Korepanov, I.G., Martyushev, E.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2010
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146349
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146349
record_format dspace
spelling irk-123456789-1463492019-02-10T01:23:17Z A Euclidean Geometric Invariant of Framed (Un)Knots in Manifolds Dubois, J. Korepanov, I.G. Martyushev, E.V. We present an invariant of a three-dimensional manifold with a framed knot in it based on the Reidemeister torsion of an acyclic complex of Euclidean geometric origin. To show its nontriviality, we calculate the invariant for some framed (un)knots in lens spaces. Our invariant is related to a finite-dimensional fermionic topological quantum field theory. 2010 Article A Euclidean Geometric Invariant of Framed (Un)Knots in Manifolds / J. Dubois , Korepanov I.G., Martyushev E.V.// Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 22 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 57M27; 57Q10; 57R56 DOI:10.3842/SIGMA.2010.032 http://dspace.nbuv.gov.ua/handle/123456789/146349 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We present an invariant of a three-dimensional manifold with a framed knot in it based on the Reidemeister torsion of an acyclic complex of Euclidean geometric origin. To show its nontriviality, we calculate the invariant for some framed (un)knots in lens spaces. Our invariant is related to a finite-dimensional fermionic topological quantum field theory.
format Article
author Dubois, J.
Korepanov, I.G.
Martyushev, E.V.
spellingShingle Dubois, J.
Korepanov, I.G.
Martyushev, E.V.
A Euclidean Geometric Invariant of Framed (Un)Knots in Manifolds
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Dubois, J.
Korepanov, I.G.
Martyushev, E.V.
author_sort Dubois, J.
title A Euclidean Geometric Invariant of Framed (Un)Knots in Manifolds
title_short A Euclidean Geometric Invariant of Framed (Un)Knots in Manifolds
title_full A Euclidean Geometric Invariant of Framed (Un)Knots in Manifolds
title_fullStr A Euclidean Geometric Invariant of Framed (Un)Knots in Manifolds
title_full_unstemmed A Euclidean Geometric Invariant of Framed (Un)Knots in Manifolds
title_sort euclidean geometric invariant of framed (un)knots in manifolds
publisher Інститут математики НАН України
publishDate 2010
url http://dspace.nbuv.gov.ua/handle/123456789/146349
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT duboisj aeuclideangeometricinvariantofframedunknotsinmanifolds
AT korepanovig aeuclideangeometricinvariantofframedunknotsinmanifolds
AT martyushevev aeuclideangeometricinvariantofframedunknotsinmanifolds
AT duboisj euclideangeometricinvariantofframedunknotsinmanifolds
AT korepanovig euclideangeometricinvariantofframedunknotsinmanifolds
AT martyushevev euclideangeometricinvariantofframedunknotsinmanifolds
first_indexed 2023-05-20T17:24:07Z
last_indexed 2023-05-20T17:24:07Z
_version_ 1796153216408223744