A Euclidean Geometric Invariant of Framed (Un)Knots in Manifolds
We present an invariant of a three-dimensional manifold with a framed knot in it based on the Reidemeister torsion of an acyclic complex of Euclidean geometric origin. To show its nontriviality, we calculate the invariant for some framed (un)knots in lens spaces. Our invariant is related to a finite...
Збережено в:
Дата: | 2010 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2010
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146349 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146349 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1463492019-02-10T01:23:17Z A Euclidean Geometric Invariant of Framed (Un)Knots in Manifolds Dubois, J. Korepanov, I.G. Martyushev, E.V. We present an invariant of a three-dimensional manifold with a framed knot in it based on the Reidemeister torsion of an acyclic complex of Euclidean geometric origin. To show its nontriviality, we calculate the invariant for some framed (un)knots in lens spaces. Our invariant is related to a finite-dimensional fermionic topological quantum field theory. 2010 Article A Euclidean Geometric Invariant of Framed (Un)Knots in Manifolds / J. Dubois , Korepanov I.G., Martyushev E.V.// Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 22 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 57M27; 57Q10; 57R56 DOI:10.3842/SIGMA.2010.032 http://dspace.nbuv.gov.ua/handle/123456789/146349 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We present an invariant of a three-dimensional manifold with a framed knot in it based on the Reidemeister torsion of an acyclic complex of Euclidean geometric origin. To show its nontriviality, we calculate the invariant for some framed (un)knots in lens spaces. Our invariant is related to a finite-dimensional fermionic topological quantum field theory. |
format |
Article |
author |
Dubois, J. Korepanov, I.G. Martyushev, E.V. |
spellingShingle |
Dubois, J. Korepanov, I.G. Martyushev, E.V. A Euclidean Geometric Invariant of Framed (Un)Knots in Manifolds Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Dubois, J. Korepanov, I.G. Martyushev, E.V. |
author_sort |
Dubois, J. |
title |
A Euclidean Geometric Invariant of Framed (Un)Knots in Manifolds |
title_short |
A Euclidean Geometric Invariant of Framed (Un)Knots in Manifolds |
title_full |
A Euclidean Geometric Invariant of Framed (Un)Knots in Manifolds |
title_fullStr |
A Euclidean Geometric Invariant of Framed (Un)Knots in Manifolds |
title_full_unstemmed |
A Euclidean Geometric Invariant of Framed (Un)Knots in Manifolds |
title_sort |
euclidean geometric invariant of framed (un)knots in manifolds |
publisher |
Інститут математики НАН України |
publishDate |
2010 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146349 |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT duboisj aeuclideangeometricinvariantofframedunknotsinmanifolds AT korepanovig aeuclideangeometricinvariantofframedunknotsinmanifolds AT martyushevev aeuclideangeometricinvariantofframedunknotsinmanifolds AT duboisj euclideangeometricinvariantofframedunknotsinmanifolds AT korepanovig euclideangeometricinvariantofframedunknotsinmanifolds AT martyushevev euclideangeometricinvariantofframedunknotsinmanifolds |
first_indexed |
2023-05-20T17:24:07Z |
last_indexed |
2023-05-20T17:24:07Z |
_version_ |
1796153216408223744 |