On Quadrirational Yang-Baxter Maps

We use the classification of the quadrirational maps given by Adler, Bobenko and Suris to describe when such maps satisfy the Yang-Baxter relation. We show that the corresponding maps can be characterized by certain singularity invariance condition. This leads to some new families of Yang-Baxter map...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Papageorgiou, V.G., Suris, Yu.B., Tongas, A.G., Veselov, A.P.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2010
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146351
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On Quadrirational Yang-Baxter Maps / V.G. Papageorgiou, Yu.B. Suris, A.G. Tongas, A.P. Veselov // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 9 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We use the classification of the quadrirational maps given by Adler, Bobenko and Suris to describe when such maps satisfy the Yang-Baxter relation. We show that the corresponding maps can be characterized by certain singularity invariance condition. This leads to some new families of Yang-Baxter maps corresponding to the geometric symmetries of pencils of quadrics.