On Quadrirational Yang-Baxter Maps

We use the classification of the quadrirational maps given by Adler, Bobenko and Suris to describe when such maps satisfy the Yang-Baxter relation. We show that the corresponding maps can be characterized by certain singularity invariance condition. This leads to some new families of Yang-Baxter map...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Papageorgiou, V.G., Suris, Yu.B., Tongas, A.G., Veselov, A.P.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2010
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146351
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On Quadrirational Yang-Baxter Maps / V.G. Papageorgiou, Yu.B. Suris, A.G. Tongas, A.P. Veselov // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146351
record_format dspace
spelling irk-123456789-1463512019-02-10T01:23:48Z On Quadrirational Yang-Baxter Maps Papageorgiou, V.G. Suris, Yu.B. Tongas, A.G. Veselov, A.P. We use the classification of the quadrirational maps given by Adler, Bobenko and Suris to describe when such maps satisfy the Yang-Baxter relation. We show that the corresponding maps can be characterized by certain singularity invariance condition. This leads to some new families of Yang-Baxter maps corresponding to the geometric symmetries of pencils of quadrics. 2010 Article On Quadrirational Yang-Baxter Maps / V.G. Papageorgiou, Yu.B. Suris, A.G. Tongas, A.P. Veselov // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 9 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 14E07; 14H70; 37K20 DOI:10.3842/SIGMA.2010.033 http://dspace.nbuv.gov.ua/handle/123456789/146351 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We use the classification of the quadrirational maps given by Adler, Bobenko and Suris to describe when such maps satisfy the Yang-Baxter relation. We show that the corresponding maps can be characterized by certain singularity invariance condition. This leads to some new families of Yang-Baxter maps corresponding to the geometric symmetries of pencils of quadrics.
format Article
author Papageorgiou, V.G.
Suris, Yu.B.
Tongas, A.G.
Veselov, A.P.
spellingShingle Papageorgiou, V.G.
Suris, Yu.B.
Tongas, A.G.
Veselov, A.P.
On Quadrirational Yang-Baxter Maps
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Papageorgiou, V.G.
Suris, Yu.B.
Tongas, A.G.
Veselov, A.P.
author_sort Papageorgiou, V.G.
title On Quadrirational Yang-Baxter Maps
title_short On Quadrirational Yang-Baxter Maps
title_full On Quadrirational Yang-Baxter Maps
title_fullStr On Quadrirational Yang-Baxter Maps
title_full_unstemmed On Quadrirational Yang-Baxter Maps
title_sort on quadrirational yang-baxter maps
publisher Інститут математики НАН України
publishDate 2010
url http://dspace.nbuv.gov.ua/handle/123456789/146351
citation_txt On Quadrirational Yang-Baxter Maps / V.G. Papageorgiou, Yu.B. Suris, A.G. Tongas, A.P. Veselov // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 9 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT papageorgiouvg onquadrirationalyangbaxtermaps
AT surisyub onquadrirationalyangbaxtermaps
AT tongasag onquadrirationalyangbaxtermaps
AT veselovap onquadrirationalyangbaxtermaps
first_indexed 2023-05-20T17:24:07Z
last_indexed 2023-05-20T17:24:07Z
_version_ 1796153216617938944