The Lax Integrable Differential-Difference Dynamical Systems on Extended Phase Spaces
The Hamiltonian representation for the hierarchy of Lax-type flows on a dual space to the Lie algebra of shift operators coupled with suitable eigenfunctions and adjoint eigenfunctions evolutions of associated spectral problems is found by means of a specially constructed Bäcklund transformation. Th...
Збережено в:
Дата: | 2010 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2010
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146352 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | The Lax Integrable Differential-Difference Dynamical Systems on Extended Phase Spaces / O.Ye. Hentosh // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 45 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146352 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1463522019-02-10T01:23:22Z The Lax Integrable Differential-Difference Dynamical Systems on Extended Phase Spaces Hentosh, O.Ye. The Hamiltonian representation for the hierarchy of Lax-type flows on a dual space to the Lie algebra of shift operators coupled with suitable eigenfunctions and adjoint eigenfunctions evolutions of associated spectral problems is found by means of a specially constructed Bäcklund transformation. The Hamiltonian description for the corresponding set of squared eigenfunction symmetry hierarchies is represented. The relation of these hierarchies with Lax integrable (2+1)-dimensional differential-difference systems and their triple Lax-type linearizations is analysed. The existence problem of a Hamiltonian representation for the coupled Lax-type hierarchy on a dual space to the central extension of the shift operator Lie algebra is solved also. 2010 Article The Lax Integrable Differential-Difference Dynamical Systems on Extended Phase Spaces / O.Ye. Hentosh // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 45 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 37J05; 37K10; 37K30; 37K35; 37K60 DOI:10.3842/SIGMA.2010.034 http://dspace.nbuv.gov.ua/handle/123456789/146352 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The Hamiltonian representation for the hierarchy of Lax-type flows on a dual space to the Lie algebra of shift operators coupled with suitable eigenfunctions and adjoint eigenfunctions evolutions of associated spectral problems is found by means of a specially constructed Bäcklund transformation. The Hamiltonian description for the corresponding set of squared eigenfunction symmetry hierarchies is represented. The relation of these hierarchies with Lax integrable (2+1)-dimensional differential-difference systems and their triple Lax-type linearizations is analysed. The existence problem of a Hamiltonian representation for the coupled Lax-type hierarchy on a dual space to the central extension of the shift operator Lie algebra is solved also. |
format |
Article |
author |
Hentosh, O.Ye. |
spellingShingle |
Hentosh, O.Ye. The Lax Integrable Differential-Difference Dynamical Systems on Extended Phase Spaces Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Hentosh, O.Ye. |
author_sort |
Hentosh, O.Ye. |
title |
The Lax Integrable Differential-Difference Dynamical Systems on Extended Phase Spaces |
title_short |
The Lax Integrable Differential-Difference Dynamical Systems on Extended Phase Spaces |
title_full |
The Lax Integrable Differential-Difference Dynamical Systems on Extended Phase Spaces |
title_fullStr |
The Lax Integrable Differential-Difference Dynamical Systems on Extended Phase Spaces |
title_full_unstemmed |
The Lax Integrable Differential-Difference Dynamical Systems on Extended Phase Spaces |
title_sort |
lax integrable differential-difference dynamical systems on extended phase spaces |
publisher |
Інститут математики НАН України |
publishDate |
2010 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146352 |
citation_txt |
The Lax Integrable Differential-Difference Dynamical Systems on Extended Phase Spaces / O.Ye. Hentosh // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 45 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT hentoshoye thelaxintegrabledifferentialdifferencedynamicalsystemsonextendedphasespaces AT hentoshoye laxintegrabledifferentialdifferencedynamicalsystemsonextendedphasespaces |
first_indexed |
2023-05-20T17:24:19Z |
last_indexed |
2023-05-20T17:24:19Z |
_version_ |
1796153216722796544 |