Monomial Crystals and Partition Crystals

Recently Fayers introduced a large family of combinatorial realizations of the fundamental crystal B(Λ₀) for sln, where the vertices are indexed by certain partitions. He showed that special cases of this construction agree with the Misra-Miwa realization and with Berg's ladder crystal. Here we...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автор: Tingley, P.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2010
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146353
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Monomial Crystals and Partition Crystals / P. Tingley // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146353
record_format dspace
spelling irk-123456789-1463532019-02-10T01:23:12Z Monomial Crystals and Partition Crystals Tingley, P. Recently Fayers introduced a large family of combinatorial realizations of the fundamental crystal B(Λ₀) for sln, where the vertices are indexed by certain partitions. He showed that special cases of this construction agree with the Misra-Miwa realization and with Berg's ladder crystal. Here we show that another special case is naturally isomorphic to a realization using Nakajima's monomial crystal. 2010 Article Monomial Crystals and Partition Crystals / P. Tingley // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 14 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B37; 05E10 DOI:10.3842/SIGMA.2010.035 http://dspace.nbuv.gov.ua/handle/123456789/146353 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Recently Fayers introduced a large family of combinatorial realizations of the fundamental crystal B(Λ₀) for sln, where the vertices are indexed by certain partitions. He showed that special cases of this construction agree with the Misra-Miwa realization and with Berg's ladder crystal. Here we show that another special case is naturally isomorphic to a realization using Nakajima's monomial crystal.
format Article
author Tingley, P.
spellingShingle Tingley, P.
Monomial Crystals and Partition Crystals
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Tingley, P.
author_sort Tingley, P.
title Monomial Crystals and Partition Crystals
title_short Monomial Crystals and Partition Crystals
title_full Monomial Crystals and Partition Crystals
title_fullStr Monomial Crystals and Partition Crystals
title_full_unstemmed Monomial Crystals and Partition Crystals
title_sort monomial crystals and partition crystals
publisher Інститут математики НАН України
publishDate 2010
url http://dspace.nbuv.gov.ua/handle/123456789/146353
citation_txt Monomial Crystals and Partition Crystals / P. Tingley // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 14 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT tingleyp monomialcrystalsandpartitioncrystals
first_indexed 2023-05-20T17:24:19Z
last_indexed 2023-05-20T17:24:19Z
_version_ 1796153216827654144