Monomial Crystals and Partition Crystals
Recently Fayers introduced a large family of combinatorial realizations of the fundamental crystal B(Λ₀) for sln, where the vertices are indexed by certain partitions. He showed that special cases of this construction agree with the Misra-Miwa realization and with Berg's ladder crystal. Here we...
Збережено в:
Дата: | 2010 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2010
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146353 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Monomial Crystals and Partition Crystals / P. Tingley // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 14 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146353 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1463532019-02-10T01:23:12Z Monomial Crystals and Partition Crystals Tingley, P. Recently Fayers introduced a large family of combinatorial realizations of the fundamental crystal B(Λ₀) for sln, where the vertices are indexed by certain partitions. He showed that special cases of this construction agree with the Misra-Miwa realization and with Berg's ladder crystal. Here we show that another special case is naturally isomorphic to a realization using Nakajima's monomial crystal. 2010 Article Monomial Crystals and Partition Crystals / P. Tingley // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 14 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B37; 05E10 DOI:10.3842/SIGMA.2010.035 http://dspace.nbuv.gov.ua/handle/123456789/146353 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Recently Fayers introduced a large family of combinatorial realizations of the fundamental crystal B(Λ₀) for sln, where the vertices are indexed by certain partitions. He showed that special cases of this construction agree with the Misra-Miwa realization and with Berg's ladder crystal. Here we show that another special case is naturally isomorphic to a realization using Nakajima's monomial crystal. |
format |
Article |
author |
Tingley, P. |
spellingShingle |
Tingley, P. Monomial Crystals and Partition Crystals Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Tingley, P. |
author_sort |
Tingley, P. |
title |
Monomial Crystals and Partition Crystals |
title_short |
Monomial Crystals and Partition Crystals |
title_full |
Monomial Crystals and Partition Crystals |
title_fullStr |
Monomial Crystals and Partition Crystals |
title_full_unstemmed |
Monomial Crystals and Partition Crystals |
title_sort |
monomial crystals and partition crystals |
publisher |
Інститут математики НАН України |
publishDate |
2010 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146353 |
citation_txt |
Monomial Crystals and Partition Crystals / P. Tingley // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 14 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT tingleyp monomialcrystalsandpartitioncrystals |
first_indexed |
2023-05-20T17:24:19Z |
last_indexed |
2023-05-20T17:24:19Z |
_version_ |
1796153216827654144 |