Bidifferential Calculus Approach to AKNS Hierarchies and Their Solutions

We express AKNS hierarchies, admitting reductions to matrix NLS and matrix mKdV hierarchies, in terms of a bidifferential graded algebra. Application of a universal result in this framework quickly generates an infinite family of exact solutions, including e.g. the matrix solitons in the focusing NL...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Dimakis, A., Müller-Hoissen, F.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2010
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146356
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Bidifferential Calculus Approach to AKNS Hierarchies and Their Solutions / A. Dimakis, F. Müller-Hoissen // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 44 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We express AKNS hierarchies, admitting reductions to matrix NLS and matrix mKdV hierarchies, in terms of a bidifferential graded algebra. Application of a universal result in this framework quickly generates an infinite family of exact solutions, including e.g. the matrix solitons in the focusing NLS case. Exploiting a general Miura transformation, we recover the generalized Heisenberg magnet hierarchy and establish a corresponding solution formula for it. Simply by exchanging the roles of the two derivations of the bidifferential graded algebra, we recover ''negative flows'', leading to an extension of the respective hierarchy. In this way we also meet a matrix and vector version of the short pulse equation and also the sine-Gordon equation. For these equations corresponding solution formulas are also derived. In all these cases the solutions are parametrized in terms of matrix data that have to satisfy a certain Sylvester equation.