A View on Optimal Transport from Noncommutative Geometry

We discuss the relation between the Wasserstein distance of order 1 between probability distributions on a metric space, arising in the study of Monge-Kantorovich transport problem, and the spectral distance of noncommutative geometry. Starting from a remark of Rieffel on compact manifolds, we first...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2010
Hauptverfasser: D'Andrea, F., Martinetti, P.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2010
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/146358
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:A View on Optimal Transport from Noncommutative Geometry / F. D'Andrea, P. Martinetti // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 44 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146358
record_format dspace
fulltext
spelling irk-123456789-1463582019-02-10T01:24:06Z A View on Optimal Transport from Noncommutative Geometry D'Andrea, F. Martinetti, P. We discuss the relation between the Wasserstein distance of order 1 between probability distributions on a metric space, arising in the study of Monge-Kantorovich transport problem, and the spectral distance of noncommutative geometry. Starting from a remark of Rieffel on compact manifolds, we first show that on any - i.e. non-necessary compact - complete Riemannian spin manifolds, the two distances coincide. Then, on convex manifolds in the sense of Nash embedding, we provide some natural upper and lower bounds to the distance between any two probability distributions. Specializing to the Euclidean space Rⁿ, we explicitly compute the distance for a particular class of distributions generalizing Gaussian wave packet. Finally we explore the analogy between the spectral and the Wasserstein distances in the noncommutative case, focusing on the standard model and the Moyal plane. In particular we point out that in the two-sheet space of the standard model, an optimal-transport interpretation of the metric requires a cost function that does not vanish on the diagonal. The latest is similar to the cost function occurring in the relativistic heat equation. 2010 Article A View on Optimal Transport from Noncommutative Geometry / F. D'Andrea, P. Martinetti // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 44 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 58B34; 82C70 doi:10.3842/SIGMA.2010.057 http://dspace.nbuv.gov.ua/handle/123456789/146358 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We discuss the relation between the Wasserstein distance of order 1 between probability distributions on a metric space, arising in the study of Monge-Kantorovich transport problem, and the spectral distance of noncommutative geometry. Starting from a remark of Rieffel on compact manifolds, we first show that on any - i.e. non-necessary compact - complete Riemannian spin manifolds, the two distances coincide. Then, on convex manifolds in the sense of Nash embedding, we provide some natural upper and lower bounds to the distance between any two probability distributions. Specializing to the Euclidean space Rⁿ, we explicitly compute the distance for a particular class of distributions generalizing Gaussian wave packet. Finally we explore the analogy between the spectral and the Wasserstein distances in the noncommutative case, focusing on the standard model and the Moyal plane. In particular we point out that in the two-sheet space of the standard model, an optimal-transport interpretation of the metric requires a cost function that does not vanish on the diagonal. The latest is similar to the cost function occurring in the relativistic heat equation.
format Article
author D'Andrea, F.
Martinetti, P.
spellingShingle D'Andrea, F.
Martinetti, P.
A View on Optimal Transport from Noncommutative Geometry
Symmetry, Integrability and Geometry: Methods and Applications
author_facet D'Andrea, F.
Martinetti, P.
author_sort D'Andrea, F.
title A View on Optimal Transport from Noncommutative Geometry
title_short A View on Optimal Transport from Noncommutative Geometry
title_full A View on Optimal Transport from Noncommutative Geometry
title_fullStr A View on Optimal Transport from Noncommutative Geometry
title_full_unstemmed A View on Optimal Transport from Noncommutative Geometry
title_sort view on optimal transport from noncommutative geometry
publisher Інститут математики НАН України
publishDate 2010
url http://dspace.nbuv.gov.ua/handle/123456789/146358
citation_txt A View on Optimal Transport from Noncommutative Geometry / F. D'Andrea, P. Martinetti // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 44 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT dandreaf aviewonoptimaltransportfromnoncommutativegeometry
AT martinettip aviewonoptimaltransportfromnoncommutativegeometry
AT dandreaf viewonoptimaltransportfromnoncommutativegeometry
AT martinettip viewonoptimaltransportfromnoncommutativegeometry
first_indexed 2025-07-10T23:31:39Z
last_indexed 2025-07-10T23:31:39Z
_version_ 1837304700650651648