Matrix Valued Classical Pairs Related to Compact Gelfand Pairs of Rank One

We present a method to obtain infinitely many examples of pairs (W,D) consisting of a matrix weight W in one variable and a symmetric second-order differential operator D. The method is based on a uniform construction of matrix valued polynomials starting from compact Gelfand pairs (G,K) of rank one...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Maarten van Pruijssen, Román, P.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146404
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Matrix Valued Classical Pairs Related to Compact Gelfand Pairs of Rank One / Maarten van Pruijssen , P. Román // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 40 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146404
record_format dspace
spelling irk-123456789-1464042019-02-10T01:23:33Z Matrix Valued Classical Pairs Related to Compact Gelfand Pairs of Rank One Maarten van Pruijssen Román, P. We present a method to obtain infinitely many examples of pairs (W,D) consisting of a matrix weight W in one variable and a symmetric second-order differential operator D. The method is based on a uniform construction of matrix valued polynomials starting from compact Gelfand pairs (G,K) of rank one and a suitable irreducible K-representation. The heart of the construction is the existence of a suitable base change Ψ₀. We analyze the base change and derive several properties. The most important one is that Ψ₀ satisfies a first-order differential equation which enables us to compute the radial part of the Casimir operator of the group G as soon as we have an explicit expression for Ψ0. The weight W is also determined by Ψ₀. We provide an algorithm to calculate Ψ₀ explicitly. For the pair (USp(2n),USp(2n−2)×USp(2)) we have implemented the algorithm in GAP so that individual pairs (W,D) can be calculated explicitly. Finally we classify the Gelfand pairs (G,K) and the K-representations that yield pairs (W,D) of size 2×2 and we provide explicit expressions for most of these cases. 2014 Article Matrix Valued Classical Pairs Related to Compact Gelfand Pairs of Rank One / Maarten van Pruijssen , P. Román // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 40 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 22E46; 33C47 DOI: http://dx.doi.org/10.3842/SIGMA.2014.113 http://dspace.nbuv.gov.ua/handle/123456789/146404 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We present a method to obtain infinitely many examples of pairs (W,D) consisting of a matrix weight W in one variable and a symmetric second-order differential operator D. The method is based on a uniform construction of matrix valued polynomials starting from compact Gelfand pairs (G,K) of rank one and a suitable irreducible K-representation. The heart of the construction is the existence of a suitable base change Ψ₀. We analyze the base change and derive several properties. The most important one is that Ψ₀ satisfies a first-order differential equation which enables us to compute the radial part of the Casimir operator of the group G as soon as we have an explicit expression for Ψ0. The weight W is also determined by Ψ₀. We provide an algorithm to calculate Ψ₀ explicitly. For the pair (USp(2n),USp(2n−2)×USp(2)) we have implemented the algorithm in GAP so that individual pairs (W,D) can be calculated explicitly. Finally we classify the Gelfand pairs (G,K) and the K-representations that yield pairs (W,D) of size 2×2 and we provide explicit expressions for most of these cases.
format Article
author Maarten van Pruijssen
Román, P.
spellingShingle Maarten van Pruijssen
Román, P.
Matrix Valued Classical Pairs Related to Compact Gelfand Pairs of Rank One
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Maarten van Pruijssen
Román, P.
author_sort Maarten van Pruijssen
title Matrix Valued Classical Pairs Related to Compact Gelfand Pairs of Rank One
title_short Matrix Valued Classical Pairs Related to Compact Gelfand Pairs of Rank One
title_full Matrix Valued Classical Pairs Related to Compact Gelfand Pairs of Rank One
title_fullStr Matrix Valued Classical Pairs Related to Compact Gelfand Pairs of Rank One
title_full_unstemmed Matrix Valued Classical Pairs Related to Compact Gelfand Pairs of Rank One
title_sort matrix valued classical pairs related to compact gelfand pairs of rank one
publisher Інститут математики НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/146404
citation_txt Matrix Valued Classical Pairs Related to Compact Gelfand Pairs of Rank One / Maarten van Pruijssen , P. Román // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 40 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT maartenvanpruijssen matrixvaluedclassicalpairsrelatedtocompactgelfandpairsofrankone
AT romanp matrixvaluedclassicalpairsrelatedtocompactgelfandpairsofrankone
first_indexed 2023-05-20T17:24:40Z
last_indexed 2023-05-20T17:24:40Z
_version_ 1796153228993232896