On the Essential Spectrum of Many-Particle Pseudorelativistic Hamiltonians with Permutational Symmetry Account

In this paper we formulate our results on the essential spectrum of many-particle pseudorelativistic Hamiltonians without magnetic and external potential fields in the spaces of functions, having arbitrary type α of the permutational symmetry. We discover location of the essential spectrum for all α...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автор: Zhislin, G.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2006
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146421
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the Essential Spectrum of Many-Particle Pseudorelativistic Hamiltonians with Permutational Symmetry Account / G. Zhislin // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146421
record_format dspace
spelling irk-123456789-1464212019-02-10T01:24:12Z On the Essential Spectrum of Many-Particle Pseudorelativistic Hamiltonians with Permutational Symmetry Account Zhislin, G. In this paper we formulate our results on the essential spectrum of many-particle pseudorelativistic Hamiltonians without magnetic and external potential fields in the spaces of functions, having arbitrary type α of the permutational symmetry. We discover location of the essential spectrum for all α and for some cases we establish new properties of the lower bound of this spectrum, which are useful for study of the discrete spectrum. 2006 Article On the Essential Spectrum of Many-Particle Pseudorelativistic Hamiltonians with Permutational Symmetry Account / G. Zhislin // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 7 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 35P20; 35Q75; 46N50; 47N50; 70H05; 81Q10 http://dspace.nbuv.gov.ua/handle/123456789/146421 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper we formulate our results on the essential spectrum of many-particle pseudorelativistic Hamiltonians without magnetic and external potential fields in the spaces of functions, having arbitrary type α of the permutational symmetry. We discover location of the essential spectrum for all α and for some cases we establish new properties of the lower bound of this spectrum, which are useful for study of the discrete spectrum.
format Article
author Zhislin, G.
spellingShingle Zhislin, G.
On the Essential Spectrum of Many-Particle Pseudorelativistic Hamiltonians with Permutational Symmetry Account
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Zhislin, G.
author_sort Zhislin, G.
title On the Essential Spectrum of Many-Particle Pseudorelativistic Hamiltonians with Permutational Symmetry Account
title_short On the Essential Spectrum of Many-Particle Pseudorelativistic Hamiltonians with Permutational Symmetry Account
title_full On the Essential Spectrum of Many-Particle Pseudorelativistic Hamiltonians with Permutational Symmetry Account
title_fullStr On the Essential Spectrum of Many-Particle Pseudorelativistic Hamiltonians with Permutational Symmetry Account
title_full_unstemmed On the Essential Spectrum of Many-Particle Pseudorelativistic Hamiltonians with Permutational Symmetry Account
title_sort on the essential spectrum of many-particle pseudorelativistic hamiltonians with permutational symmetry account
publisher Інститут математики НАН України
publishDate 2006
url http://dspace.nbuv.gov.ua/handle/123456789/146421
citation_txt On the Essential Spectrum of Many-Particle Pseudorelativistic Hamiltonians with Permutational Symmetry Account / G. Zhislin // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 7 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT zhisling ontheessentialspectrumofmanyparticlepseudorelativistichamiltonianswithpermutationalsymmetryaccount
first_indexed 2023-05-20T17:24:21Z
last_indexed 2023-05-20T17:24:21Z
_version_ 1796153217671757824