On Orthogonality Relations for Dual Discrete q-Ultraspherical Polynomials
The dual discrete q-ultraspherical polynomials Dn(s)(μ(x;s)|q) correspond to indeterminate moment problem and, therefore, have one-parameter family of extremal orthogonality relations. It is shown that special cases of dual discrete q-ultraspherical polynomials Dn(s)(μ(x;s)|q), when s = q⁻¹ and s =...
Збережено в:
Дата: | 2006 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2006
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146429 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On Orthogonality Relations for Dual Discrete q-Ultraspherical Polynomials / V.A. Groza, I.I. Kachuryk // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146429 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1464292019-02-10T01:24:21Z On Orthogonality Relations for Dual Discrete q-Ultraspherical Polynomials Groza, V.A. Kachuryk, I.I. The dual discrete q-ultraspherical polynomials Dn(s)(μ(x;s)|q) correspond to indeterminate moment problem and, therefore, have one-parameter family of extremal orthogonality relations. It is shown that special cases of dual discrete q-ultraspherical polynomials Dn(s)(μ(x;s)|q), when s = q⁻¹ and s = q, are directly connected with q⁻¹-Hermite polynomials. These connections are given in an explicit form. Using these relations, all extremal orthogonality relations for these special cases of polynomials Dn(s)(μ(x;s)|q) are found. 2006 Article On Orthogonality Relations for Dual Discrete q-Ultraspherical Polynomials / V.A. Groza, I.I. Kachuryk // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 11 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 33D45; 81Q99 http://dspace.nbuv.gov.ua/handle/123456789/146429 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The dual discrete q-ultraspherical polynomials Dn(s)(μ(x;s)|q) correspond to indeterminate moment problem and, therefore, have one-parameter family of extremal orthogonality relations. It is shown that special cases of dual discrete q-ultraspherical polynomials Dn(s)(μ(x;s)|q), when s = q⁻¹ and s = q, are directly connected with q⁻¹-Hermite polynomials. These connections are given in an explicit form. Using these relations, all extremal orthogonality relations for these special cases of polynomials Dn(s)(μ(x;s)|q) are found. |
format |
Article |
author |
Groza, V.A. Kachuryk, I.I. |
spellingShingle |
Groza, V.A. Kachuryk, I.I. On Orthogonality Relations for Dual Discrete q-Ultraspherical Polynomials Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Groza, V.A. Kachuryk, I.I. |
author_sort |
Groza, V.A. |
title |
On Orthogonality Relations for Dual Discrete q-Ultraspherical Polynomials |
title_short |
On Orthogonality Relations for Dual Discrete q-Ultraspherical Polynomials |
title_full |
On Orthogonality Relations for Dual Discrete q-Ultraspherical Polynomials |
title_fullStr |
On Orthogonality Relations for Dual Discrete q-Ultraspherical Polynomials |
title_full_unstemmed |
On Orthogonality Relations for Dual Discrete q-Ultraspherical Polynomials |
title_sort |
on orthogonality relations for dual discrete q-ultraspherical polynomials |
publisher |
Інститут математики НАН України |
publishDate |
2006 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146429 |
citation_txt |
On Orthogonality Relations for Dual Discrete q-Ultraspherical Polynomials / V.A. Groza, I.I. Kachuryk // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 11 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT grozava onorthogonalityrelationsfordualdiscretequltrasphericalpolynomials AT kachurykii onorthogonalityrelationsfordualdiscretequltrasphericalpolynomials |
first_indexed |
2023-05-20T17:24:22Z |
last_indexed |
2023-05-20T17:24:22Z |
_version_ |
1796153218199191552 |