On Linearizing Systems of Diffusion Equations

We consider systems of diffusion equations that have considerable interest in Soil Science and Mathematical Biology and focus upon the problem of finding those forms of this class that can be linearized. In particular we use the equivalence transformations of the second generation potential system t...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Sophocleous, C., Wiltshire, R.G.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2006
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146430
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On Linearizing Systems of Diffusion Equations / C. Sophocleous, R.G. Wiltshire // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146430
record_format dspace
spelling irk-123456789-1464302019-02-10T01:25:46Z On Linearizing Systems of Diffusion Equations Sophocleous, C. Wiltshire, R.G. We consider systems of diffusion equations that have considerable interest in Soil Science and Mathematical Biology and focus upon the problem of finding those forms of this class that can be linearized. In particular we use the equivalence transformations of the second generation potential system to derive forms of this system that can be linearized. In turn, these transformations lead to nonlocal mappings that linearize the original system. 2006 Article On Linearizing Systems of Diffusion Equations / C. Sophocleous, R.G. Wiltshire // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 10 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 35A30; 58J70; 58J72; 92B05 http://dspace.nbuv.gov.ua/handle/123456789/146430 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We consider systems of diffusion equations that have considerable interest in Soil Science and Mathematical Biology and focus upon the problem of finding those forms of this class that can be linearized. In particular we use the equivalence transformations of the second generation potential system to derive forms of this system that can be linearized. In turn, these transformations lead to nonlocal mappings that linearize the original system.
format Article
author Sophocleous, C.
Wiltshire, R.G.
spellingShingle Sophocleous, C.
Wiltshire, R.G.
On Linearizing Systems of Diffusion Equations
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Sophocleous, C.
Wiltshire, R.G.
author_sort Sophocleous, C.
title On Linearizing Systems of Diffusion Equations
title_short On Linearizing Systems of Diffusion Equations
title_full On Linearizing Systems of Diffusion Equations
title_fullStr On Linearizing Systems of Diffusion Equations
title_full_unstemmed On Linearizing Systems of Diffusion Equations
title_sort on linearizing systems of diffusion equations
publisher Інститут математики НАН України
publishDate 2006
url http://dspace.nbuv.gov.ua/handle/123456789/146430
citation_txt On Linearizing Systems of Diffusion Equations / C. Sophocleous, R.G. Wiltshire // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 10 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT sophocleousc onlinearizingsystemsofdiffusionequations
AT wiltshirerg onlinearizingsystemsofdiffusionequations
first_indexed 2023-05-20T17:24:47Z
last_indexed 2023-05-20T17:24:47Z
_version_ 1796153240657592320