On Linearizing Systems of Diffusion Equations
We consider systems of diffusion equations that have considerable interest in Soil Science and Mathematical Biology and focus upon the problem of finding those forms of this class that can be linearized. In particular we use the equivalence transformations of the second generation potential system t...
Збережено в:
Дата: | 2006 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2006
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146430 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On Linearizing Systems of Diffusion Equations / C. Sophocleous, R.G. Wiltshire // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146430 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1464302019-02-10T01:25:46Z On Linearizing Systems of Diffusion Equations Sophocleous, C. Wiltshire, R.G. We consider systems of diffusion equations that have considerable interest in Soil Science and Mathematical Biology and focus upon the problem of finding those forms of this class that can be linearized. In particular we use the equivalence transformations of the second generation potential system to derive forms of this system that can be linearized. In turn, these transformations lead to nonlocal mappings that linearize the original system. 2006 Article On Linearizing Systems of Diffusion Equations / C. Sophocleous, R.G. Wiltshire // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 10 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 35A30; 58J70; 58J72; 92B05 http://dspace.nbuv.gov.ua/handle/123456789/146430 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We consider systems of diffusion equations that have considerable interest in Soil Science and Mathematical Biology and focus upon the problem of finding those forms of this class that can be linearized. In particular we use the equivalence transformations of the second generation potential system to derive forms of this system that can be linearized. In turn, these transformations lead to nonlocal mappings that linearize the original system. |
format |
Article |
author |
Sophocleous, C. Wiltshire, R.G. |
spellingShingle |
Sophocleous, C. Wiltshire, R.G. On Linearizing Systems of Diffusion Equations Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Sophocleous, C. Wiltshire, R.G. |
author_sort |
Sophocleous, C. |
title |
On Linearizing Systems of Diffusion Equations |
title_short |
On Linearizing Systems of Diffusion Equations |
title_full |
On Linearizing Systems of Diffusion Equations |
title_fullStr |
On Linearizing Systems of Diffusion Equations |
title_full_unstemmed |
On Linearizing Systems of Diffusion Equations |
title_sort |
on linearizing systems of diffusion equations |
publisher |
Інститут математики НАН України |
publishDate |
2006 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146430 |
citation_txt |
On Linearizing Systems of Diffusion Equations / C. Sophocleous, R.G. Wiltshire // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 10 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT sophocleousc onlinearizingsystemsofdiffusionequations AT wiltshirerg onlinearizingsystemsofdiffusionequations |
first_indexed |
2023-05-20T17:24:47Z |
last_indexed |
2023-05-20T17:24:47Z |
_version_ |
1796153240657592320 |