A New Form of the Spherical Expansion of Zonal Functions and Fourier Transforms of SO(d)-Finite Functions
This paper presents recent results obtained by the authors (partly in collaboration with A. Dabrowska) concerning expansions of zonal functions on Euclidean spheres into spherical harmonics and some applications of such expansions for problems involving Fourier transforms of functions with rotationa...
Збережено в:
Дата: | 2006 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2006
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146431 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A New Form of the Spherical Expansion of Zonal Functions and Fourier Transforms of SO(d)-Finite Functions / A. Bezubik, A. Strasburger // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 13 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | This paper presents recent results obtained by the authors (partly in collaboration with A. Dabrowska) concerning expansions of zonal functions on Euclidean spheres into spherical harmonics and some applications of such expansions for problems involving Fourier transforms of functions with rotational symmetry. The method used to derive the expansion formula is based entirely on differential methods and completely avoids the use of various integral identities commonly used in this context. Some new identities for the Fourier transform are derived and as a byproduct seemingly new recurrence relations for the classical Bessel functions are obtained. |
---|