A New Form of the Spherical Expansion of Zonal Functions and Fourier Transforms of SO(d)-Finite Functions

This paper presents recent results obtained by the authors (partly in collaboration with A. Dabrowska) concerning expansions of zonal functions on Euclidean spheres into spherical harmonics and some applications of such expansions for problems involving Fourier transforms of functions with rotationa...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Bezubik, A., Strasburger, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2006
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146431
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A New Form of the Spherical Expansion of Zonal Functions and Fourier Transforms of SO(d)-Finite Functions / A. Bezubik, A. Strasburger // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146431
record_format dspace
spelling irk-123456789-1464312019-02-10T01:23:34Z A New Form of the Spherical Expansion of Zonal Functions and Fourier Transforms of SO(d)-Finite Functions Bezubik, A. Strasburger, A. This paper presents recent results obtained by the authors (partly in collaboration with A. Dabrowska) concerning expansions of zonal functions on Euclidean spheres into spherical harmonics and some applications of such expansions for problems involving Fourier transforms of functions with rotational symmetry. The method used to derive the expansion formula is based entirely on differential methods and completely avoids the use of various integral identities commonly used in this context. Some new identities for the Fourier transform are derived and as a byproduct seemingly new recurrence relations for the classical Bessel functions are obtained. 2006 Article A New Form of the Spherical Expansion of Zonal Functions and Fourier Transforms of SO(d)-Finite Functions / A. Bezubik, A. Strasburger // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 13 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 33C55; 42B10; 33C80; 44A15; 44A20 http://dspace.nbuv.gov.ua/handle/123456789/146431 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description This paper presents recent results obtained by the authors (partly in collaboration with A. Dabrowska) concerning expansions of zonal functions on Euclidean spheres into spherical harmonics and some applications of such expansions for problems involving Fourier transforms of functions with rotational symmetry. The method used to derive the expansion formula is based entirely on differential methods and completely avoids the use of various integral identities commonly used in this context. Some new identities for the Fourier transform are derived and as a byproduct seemingly new recurrence relations for the classical Bessel functions are obtained.
format Article
author Bezubik, A.
Strasburger, A.
spellingShingle Bezubik, A.
Strasburger, A.
A New Form of the Spherical Expansion of Zonal Functions and Fourier Transforms of SO(d)-Finite Functions
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Bezubik, A.
Strasburger, A.
author_sort Bezubik, A.
title A New Form of the Spherical Expansion of Zonal Functions and Fourier Transforms of SO(d)-Finite Functions
title_short A New Form of the Spherical Expansion of Zonal Functions and Fourier Transforms of SO(d)-Finite Functions
title_full A New Form of the Spherical Expansion of Zonal Functions and Fourier Transforms of SO(d)-Finite Functions
title_fullStr A New Form of the Spherical Expansion of Zonal Functions and Fourier Transforms of SO(d)-Finite Functions
title_full_unstemmed A New Form of the Spherical Expansion of Zonal Functions and Fourier Transforms of SO(d)-Finite Functions
title_sort new form of the spherical expansion of zonal functions and fourier transforms of so(d)-finite functions
publisher Інститут математики НАН України
publishDate 2006
url http://dspace.nbuv.gov.ua/handle/123456789/146431
citation_txt A New Form of the Spherical Expansion of Zonal Functions and Fourier Transforms of SO(d)-Finite Functions / A. Bezubik, A. Strasburger // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 13 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT bezubika anewformofthesphericalexpansionofzonalfunctionsandfouriertransformsofsodfinitefunctions
AT strasburgera anewformofthesphericalexpansionofzonalfunctionsandfouriertransformsofsodfinitefunctions
AT bezubika newformofthesphericalexpansionofzonalfunctionsandfouriertransformsofsodfinitefunctions
AT strasburgera newformofthesphericalexpansionofzonalfunctionsandfouriertransformsofsodfinitefunctions
first_indexed 2023-05-20T17:24:22Z
last_indexed 2023-05-20T17:24:22Z
_version_ 1796153218304049152