On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations
We discuss Lie algebras of the Lie symmetry groups of two generically non-integrable equations in one temporal and two space dimensions arising in different contexts. The first is a generalization of the KP equation and contains 9 arbitrary functions of one and two arguments. The second one is a sys...
Збережено в:
Дата: | 2006 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2006
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146434 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations / F. Güngör // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 16 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146434 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1464342019-02-10T01:23:54Z On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations Güngör, F. We discuss Lie algebras of the Lie symmetry groups of two generically non-integrable equations in one temporal and two space dimensions arising in different contexts. The first is a generalization of the KP equation and contains 9 arbitrary functions of one and two arguments. The second one is a system of PDEs that depend on some physical parameters. We require that these PDEs are invariant under a Kac-Moody-Virasoro algebra. This leads to several limitations on the coefficients (either functions or parameters) under which equations are prime candidates for being integrable. 2006 Article On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations / F. Güngör // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 16 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 35A30; 35Q53; 35Q55; 35Q58 http://dspace.nbuv.gov.ua/handle/123456789/146434 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We discuss Lie algebras of the Lie symmetry groups of two generically non-integrable equations in one temporal and two space dimensions arising in different contexts. The first is a generalization of the KP equation and contains 9 arbitrary functions of one and two arguments. The second one is a system of PDEs that depend on some physical parameters. We require that these PDEs are invariant under a Kac-Moody-Virasoro algebra. This leads to several limitations on the coefficients (either functions or parameters) under which equations are prime candidates for being integrable. |
format |
Article |
author |
Güngör, F. |
spellingShingle |
Güngör, F. On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Güngör, F. |
author_sort |
Güngör, F. |
title |
On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations |
title_short |
On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations |
title_full |
On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations |
title_fullStr |
On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations |
title_full_unstemmed |
On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations |
title_sort |
on the virasoro structure of symmetry algebras of nonlinear partial differential equations |
publisher |
Інститут математики НАН України |
publishDate |
2006 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146434 |
citation_txt |
On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations / F. Güngör // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 16 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT gungorf onthevirasorostructureofsymmetryalgebrasofnonlinearpartialdifferentialequations |
first_indexed |
2023-05-20T17:24:47Z |
last_indexed |
2023-05-20T17:24:47Z |
_version_ |
1796153236532494336 |