On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations

We discuss Lie algebras of the Lie symmetry groups of two generically non-integrable equations in one temporal and two space dimensions arising in different contexts. The first is a generalization of the KP equation and contains 9 arbitrary functions of one and two arguments. The second one is a sys...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автор: Güngör, F.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2006
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146434
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations / F. Güngör // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 16 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146434
record_format dspace
spelling irk-123456789-1464342019-02-10T01:23:54Z On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations Güngör, F. We discuss Lie algebras of the Lie symmetry groups of two generically non-integrable equations in one temporal and two space dimensions arising in different contexts. The first is a generalization of the KP equation and contains 9 arbitrary functions of one and two arguments. The second one is a system of PDEs that depend on some physical parameters. We require that these PDEs are invariant under a Kac-Moody-Virasoro algebra. This leads to several limitations on the coefficients (either functions or parameters) under which equations are prime candidates for being integrable. 2006 Article On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations / F. Güngör // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 16 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 35A30; 35Q53; 35Q55; 35Q58 http://dspace.nbuv.gov.ua/handle/123456789/146434 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We discuss Lie algebras of the Lie symmetry groups of two generically non-integrable equations in one temporal and two space dimensions arising in different contexts. The first is a generalization of the KP equation and contains 9 arbitrary functions of one and two arguments. The second one is a system of PDEs that depend on some physical parameters. We require that these PDEs are invariant under a Kac-Moody-Virasoro algebra. This leads to several limitations on the coefficients (either functions or parameters) under which equations are prime candidates for being integrable.
format Article
author Güngör, F.
spellingShingle Güngör, F.
On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Güngör, F.
author_sort Güngör, F.
title On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations
title_short On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations
title_full On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations
title_fullStr On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations
title_full_unstemmed On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations
title_sort on the virasoro structure of symmetry algebras of nonlinear partial differential equations
publisher Інститут математики НАН України
publishDate 2006
url http://dspace.nbuv.gov.ua/handle/123456789/146434
citation_txt On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations / F. Güngör // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 16 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT gungorf onthevirasorostructureofsymmetryalgebrasofnonlinearpartialdifferentialequations
first_indexed 2023-05-20T17:24:47Z
last_indexed 2023-05-20T17:24:47Z
_version_ 1796153236532494336