q-Deformed Bi-Local Fields II

We study a way of q-deformation of the bi-local system, the two particle system bounded by a relativistic harmonic oscillator type of potential, from both points of view of mass spectra and the behavior of scattering amplitudes. In our formulation, the deformation is done so that P², the square of c...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Toyoda, H., Naka, S.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2006
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146438
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:q-Deformed Bi-Local Fields II / H. Toyoda, S. Naka // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146438
record_format dspace
spelling irk-123456789-1464382019-02-10T01:24:23Z q-Deformed Bi-Local Fields II Toyoda, H. Naka, S. We study a way of q-deformation of the bi-local system, the two particle system bounded by a relativistic harmonic oscillator type of potential, from both points of view of mass spectra and the behavior of scattering amplitudes. In our formulation, the deformation is done so that P², the square of center of mass momentum, enters into the deformation parameters of relative coordinates. As a result, the wave equation of the bi-local system becomes nonlinear with respect to P²; then, the propagator of the bi-local system suffers significant change so as to get a convergent self energy to the second order. The study is also made on the covariant q-deformation in four dimensional spacetime. 2006 Article q-Deformed Bi-Local Fields II / H. Toyoda, S. Naka // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 13 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 32G07; 81R50; 81R60 http://dspace.nbuv.gov.ua/handle/123456789/146438 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We study a way of q-deformation of the bi-local system, the two particle system bounded by a relativistic harmonic oscillator type of potential, from both points of view of mass spectra and the behavior of scattering amplitudes. In our formulation, the deformation is done so that P², the square of center of mass momentum, enters into the deformation parameters of relative coordinates. As a result, the wave equation of the bi-local system becomes nonlinear with respect to P²; then, the propagator of the bi-local system suffers significant change so as to get a convergent self energy to the second order. The study is also made on the covariant q-deformation in four dimensional spacetime.
format Article
author Toyoda, H.
Naka, S.
spellingShingle Toyoda, H.
Naka, S.
q-Deformed Bi-Local Fields II
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Toyoda, H.
Naka, S.
author_sort Toyoda, H.
title q-Deformed Bi-Local Fields II
title_short q-Deformed Bi-Local Fields II
title_full q-Deformed Bi-Local Fields II
title_fullStr q-Deformed Bi-Local Fields II
title_full_unstemmed q-Deformed Bi-Local Fields II
title_sort q-deformed bi-local fields ii
publisher Інститут математики НАН України
publishDate 2006
url http://dspace.nbuv.gov.ua/handle/123456789/146438
citation_txt q-Deformed Bi-Local Fields II / H. Toyoda, S. Naka // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 13 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT toyodah qdeformedbilocalfieldsii
AT nakas qdeformedbilocalfieldsii
first_indexed 2023-05-20T17:24:23Z
last_indexed 2023-05-20T17:24:23Z
_version_ 1796153218725576704