On the Degenerate Multiplicity of the sl₂ Loop Algebra for the 6V Transfer Matrix at Roots of Unity
We review the main result of cond-mat/0503564. The Hamiltonian of the XXZ spin chain and the transfer matrix of the six-vertex model has the sl₂ loop algebra symmetry if the q parameter is given by a root of unity, q₀2N = 1, for an integer N. We discuss the dimensions of the degenerate eigenspace ge...
Збережено в:
Дата: | 2006 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2006
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146446 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On the Degenerate Multiplicity of the sl₂ Loop Algebra for the 6V Transfer Matrix at Roots of Unity / T. Deguchi // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 30 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We review the main result of cond-mat/0503564. The Hamiltonian of the XXZ spin chain and the transfer matrix of the six-vertex model has the sl₂ loop algebra symmetry if the q parameter is given by a root of unity, q₀2N = 1, for an integer N. We discuss the dimensions of the degenerate eigenspace generated by a regular Bethe state in some sectors, rigorously as follows: We show that every regular Bethe ansatz eigenvector in the sectors is a highest weight vector and derive the highest weight dk±, which leads to evaluation parameters aj. If the evaluation parameters are distinct, we obtain the dimensions of the highest weight representation generated by the regular Bethe state. |
---|