On the Degenerate Multiplicity of the sl₂ Loop Algebra for the 6V Transfer Matrix at Roots of Unity

We review the main result of cond-mat/0503564. The Hamiltonian of the XXZ spin chain and the transfer matrix of the six-vertex model has the sl₂ loop algebra symmetry if the q parameter is given by a root of unity, q₀2N = 1, for an integer N. We discuss the dimensions of the degenerate eigenspace ge...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автор: Deguchi, T.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2006
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146446
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the Degenerate Multiplicity of the sl₂ Loop Algebra for the 6V Transfer Matrix at Roots of Unity / T. Deguchi // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 30 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We review the main result of cond-mat/0503564. The Hamiltonian of the XXZ spin chain and the transfer matrix of the six-vertex model has the sl₂ loop algebra symmetry if the q parameter is given by a root of unity, q₀2N = 1, for an integer N. We discuss the dimensions of the degenerate eigenspace generated by a regular Bethe state in some sectors, rigorously as follows: We show that every regular Bethe ansatz eigenvector in the sectors is a highest weight vector and derive the highest weight dk±, which leads to evaluation parameters aj. If the evaluation parameters are distinct, we obtain the dimensions of the highest weight representation generated by the regular Bethe state.