Orbit Functions

In the paper, properties of orbit functions are reviewed and further developed. Orbit functions on the Euclidean space En are symmetrized exponential functions. The symmetrization is fulfilled by a Weyl group corresponding to a Coxeter-Dynkin diagram. Properties of such functions will be described....

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Klimyk, A., Patera, J.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2006
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146452
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Orbit Functions / A. Klimyk, J. Patera // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 41 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146452
record_format dspace
spelling irk-123456789-1464522019-02-10T01:25:47Z Orbit Functions Klimyk, A. Patera, J. In the paper, properties of orbit functions are reviewed and further developed. Orbit functions on the Euclidean space En are symmetrized exponential functions. The symmetrization is fulfilled by a Weyl group corresponding to a Coxeter-Dynkin diagram. Properties of such functions will be described. An orbit function is the contribution to an irreducible character of a compact semisimple Lie group G of rank n from one of its Weyl group orbits. It is shown that values of orbit functions are repeated on copies of the fundamental domain F of the affine Weyl group (determined by the initial Weyl group) in the entire Euclidean space En. Orbit functions are solutions of the corresponding Laplace equation in En, satisfying the Neumann condition on the boundary of F. Orbit functions determine a symmetrized Fourier transform and a transform on a finite set of points. 2006 Article Orbit Functions / A. Klimyk, J. Patera // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 41 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 33-02; 33E99; 42C15; 58C40 http://dspace.nbuv.gov.ua/handle/123456789/146452 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In the paper, properties of orbit functions are reviewed and further developed. Orbit functions on the Euclidean space En are symmetrized exponential functions. The symmetrization is fulfilled by a Weyl group corresponding to a Coxeter-Dynkin diagram. Properties of such functions will be described. An orbit function is the contribution to an irreducible character of a compact semisimple Lie group G of rank n from one of its Weyl group orbits. It is shown that values of orbit functions are repeated on copies of the fundamental domain F of the affine Weyl group (determined by the initial Weyl group) in the entire Euclidean space En. Orbit functions are solutions of the corresponding Laplace equation in En, satisfying the Neumann condition on the boundary of F. Orbit functions determine a symmetrized Fourier transform and a transform on a finite set of points.
format Article
author Klimyk, A.
Patera, J.
spellingShingle Klimyk, A.
Patera, J.
Orbit Functions
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Klimyk, A.
Patera, J.
author_sort Klimyk, A.
title Orbit Functions
title_short Orbit Functions
title_full Orbit Functions
title_fullStr Orbit Functions
title_full_unstemmed Orbit Functions
title_sort orbit functions
publisher Інститут математики НАН України
publishDate 2006
url http://dspace.nbuv.gov.ua/handle/123456789/146452
citation_txt Orbit Functions / A. Klimyk, J. Patera // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 41 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT klimyka orbitfunctions
AT pateraj orbitfunctions
first_indexed 2023-05-20T17:24:48Z
last_indexed 2023-05-20T17:24:48Z
_version_ 1796153240870453248