Multi-Well Potentials in Quantum Mechanics and Stochastic Processes

Using the formalism of extended N=4 supersymmetric quantum mechanics we consider the procedure of the construction of multi-well potentials. We demonstrate the form-invariance of Hamiltonians entering the supermultiplet, using the presented relation for integrals, which contain fundamental solutions...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Berezovoj, V.P., Ivashkevych, G.I., Konchatnij, M.I.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2010
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146499
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Multi-Well Potentials in Quantum Mechanics and Stochastic Processes / V.P. Berezovoj, G.I. Ivashkevych, M.I. Konchatnij // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 43 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146499
record_format dspace
spelling irk-123456789-1464992019-02-10T01:25:44Z Multi-Well Potentials in Quantum Mechanics and Stochastic Processes Berezovoj, V.P. Ivashkevych, G.I. Konchatnij, M.I. Using the formalism of extended N=4 supersymmetric quantum mechanics we consider the procedure of the construction of multi-well potentials. We demonstrate the form-invariance of Hamiltonians entering the supermultiplet, using the presented relation for integrals, which contain fundamental solutions. The possibility of partial N=4 supersymmetry breaking is determined. We also obtain exact forms of multi-well potentials, both symmetric and asymmetric, using the Hamiltonian of harmonic oscillator as initial. The modification of the shape of potentials due to variation of parameters is also discussed, as well as application of the obtained results to the study of tunneling processes. We consider the case of exact, as well as partially broken N=4 supersymmetry. The distinctive feature of obtained probability densities and potentials is a parametric freedom, which allows to substantially modify their shape. We obtain the expressions for probability densities under the generalization of the Ornstein-Uhlenbeck process. 2010 Article Multi-Well Potentials in Quantum Mechanics and Stochastic Processes / V.P. Berezovoj, G.I. Ivashkevych, M.I. Konchatnij // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 43 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 81Q60 DOI:10.3842/SIGMA.2010.098 http://dspace.nbuv.gov.ua/handle/123456789/146499 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Using the formalism of extended N=4 supersymmetric quantum mechanics we consider the procedure of the construction of multi-well potentials. We demonstrate the form-invariance of Hamiltonians entering the supermultiplet, using the presented relation for integrals, which contain fundamental solutions. The possibility of partial N=4 supersymmetry breaking is determined. We also obtain exact forms of multi-well potentials, both symmetric and asymmetric, using the Hamiltonian of harmonic oscillator as initial. The modification of the shape of potentials due to variation of parameters is also discussed, as well as application of the obtained results to the study of tunneling processes. We consider the case of exact, as well as partially broken N=4 supersymmetry. The distinctive feature of obtained probability densities and potentials is a parametric freedom, which allows to substantially modify their shape. We obtain the expressions for probability densities under the generalization of the Ornstein-Uhlenbeck process.
format Article
author Berezovoj, V.P.
Ivashkevych, G.I.
Konchatnij, M.I.
spellingShingle Berezovoj, V.P.
Ivashkevych, G.I.
Konchatnij, M.I.
Multi-Well Potentials in Quantum Mechanics and Stochastic Processes
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Berezovoj, V.P.
Ivashkevych, G.I.
Konchatnij, M.I.
author_sort Berezovoj, V.P.
title Multi-Well Potentials in Quantum Mechanics and Stochastic Processes
title_short Multi-Well Potentials in Quantum Mechanics and Stochastic Processes
title_full Multi-Well Potentials in Quantum Mechanics and Stochastic Processes
title_fullStr Multi-Well Potentials in Quantum Mechanics and Stochastic Processes
title_full_unstemmed Multi-Well Potentials in Quantum Mechanics and Stochastic Processes
title_sort multi-well potentials in quantum mechanics and stochastic processes
publisher Інститут математики НАН України
publishDate 2010
url http://dspace.nbuv.gov.ua/handle/123456789/146499
citation_txt Multi-Well Potentials in Quantum Mechanics and Stochastic Processes / V.P. Berezovoj, G.I. Ivashkevych, M.I. Konchatnij // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 43 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT berezovojvp multiwellpotentialsinquantummechanicsandstochasticprocesses
AT ivashkevychgi multiwellpotentialsinquantummechanicsandstochasticprocesses
AT konchatnijmi multiwellpotentialsinquantummechanicsandstochasticprocesses
first_indexed 2023-05-20T17:24:56Z
last_indexed 2023-05-20T17:24:56Z
_version_ 1796153245766254592