A Particular Solution of a Painlevé System in Terms of the Hypergeometric Function n+1Fn

In a recent work, we proposed the coupled Painlevé VI system with A2n+1⁽¹⁾-symmetry, which is a higher order generalization of the sixth Painlevé equation (PVI). In this article, we present its particular solution expressed in terms of the hypergeometric function n+1Fn. We also discuss a degeneratio...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автор: Suzuki, T.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2010
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146500
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A Particular Solution of a Painlevé System in Terms of the Hypergeometric Function n+1Fn / T. Suzuki // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 6 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146500
record_format dspace
spelling irk-123456789-1465002019-02-10T01:25:11Z A Particular Solution of a Painlevé System in Terms of the Hypergeometric Function n+1Fn Suzuki, T. In a recent work, we proposed the coupled Painlevé VI system with A2n+1⁽¹⁾-symmetry, which is a higher order generalization of the sixth Painlevé equation (PVI). In this article, we present its particular solution expressed in terms of the hypergeometric function n+1Fn. We also discuss a degeneration structure of the Painlevé system derived from the confluence of n+1Fn. 2010 Article A Particular Solution of a Painlevé System in Terms of the Hypergeometric Function n+1Fn / T. Suzuki // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 6 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B80; 33C20; 34M55 DOI:10.3842/SIGMA.2010.078 http://dspace.nbuv.gov.ua/handle/123456789/146500 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In a recent work, we proposed the coupled Painlevé VI system with A2n+1⁽¹⁾-symmetry, which is a higher order generalization of the sixth Painlevé equation (PVI). In this article, we present its particular solution expressed in terms of the hypergeometric function n+1Fn. We also discuss a degeneration structure of the Painlevé system derived from the confluence of n+1Fn.
format Article
author Suzuki, T.
spellingShingle Suzuki, T.
A Particular Solution of a Painlevé System in Terms of the Hypergeometric Function n+1Fn
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Suzuki, T.
author_sort Suzuki, T.
title A Particular Solution of a Painlevé System in Terms of the Hypergeometric Function n+1Fn
title_short A Particular Solution of a Painlevé System in Terms of the Hypergeometric Function n+1Fn
title_full A Particular Solution of a Painlevé System in Terms of the Hypergeometric Function n+1Fn
title_fullStr A Particular Solution of a Painlevé System in Terms of the Hypergeometric Function n+1Fn
title_full_unstemmed A Particular Solution of a Painlevé System in Terms of the Hypergeometric Function n+1Fn
title_sort particular solution of a painlevé system in terms of the hypergeometric function n+1fn
publisher Інститут математики НАН України
publishDate 2010
url http://dspace.nbuv.gov.ua/handle/123456789/146500
citation_txt A Particular Solution of a Painlevé System in Terms of the Hypergeometric Function n+1Fn / T. Suzuki // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 6 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT suzukit aparticularsolutionofapainlevesystemintermsofthehypergeometricfunctionn1fn
AT suzukit particularsolutionofapainlevesystemintermsofthehypergeometricfunctionn1fn
first_indexed 2023-05-20T17:24:56Z
last_indexed 2023-05-20T17:24:56Z
_version_ 1796153237379743744