Tools for Verifying Classical and Quantum Superintegrability

Recently many new classes of integrable systems in n dimensions occurring in classical and quantum mechanics have been shown to admit a functionally independent set of 2n−1 symmetries polynomial in the canonical momenta, so that they are in fact superintegrable. These newly discovered systems are al...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Kalnins, E.G., Kress, J.M., Willard Miller, Jr.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2010
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146503
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Tools for Verifying Classical and Quantum Superintegrability / E.G. Kalnins, J.M. Kress, Jr. Willard Miller // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 24 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146503
record_format dspace
spelling irk-123456789-1465032019-02-10T01:24:41Z Tools for Verifying Classical and Quantum Superintegrability Kalnins, E.G. Kress, J.M. Willard Miller, Jr. Recently many new classes of integrable systems in n dimensions occurring in classical and quantum mechanics have been shown to admit a functionally independent set of 2n−1 symmetries polynomial in the canonical momenta, so that they are in fact superintegrable. These newly discovered systems are all separable in some coordinate system and, typically, they depend on one or more parameters in such a way that the system is superintegrable exactly when some of the parameters are rational numbers. Most of the constructions to date are for n=2 but cases where n>2 are multiplying rapidly. In this article we organize a large class of such systems, many new, and emphasize the underlying mechanisms which enable this phenomena to occur and to prove superintegrability. In addition to proofs of classical superintegrability we show that the 2D caged anisotropic oscillator and a Stäckel transformed version on the 2-sheet hyperboloid are quantum superintegrable for all rational relative frequencies, and that a deformed 2D Kepler-Coulomb system is quantum superintegrable for all rational values of a parameter k in the potential. 2010 Article Tools for Verifying Classical and Quantum Superintegrability / E.G. Kalnins, J.M. Kress, Jr. Willard Miller // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 24 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 20C99; 20C35; 22E70 DOI:10.3842/SIGMA.2010.066 http://dspace.nbuv.gov.ua/handle/123456789/146503 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Recently many new classes of integrable systems in n dimensions occurring in classical and quantum mechanics have been shown to admit a functionally independent set of 2n−1 symmetries polynomial in the canonical momenta, so that they are in fact superintegrable. These newly discovered systems are all separable in some coordinate system and, typically, they depend on one or more parameters in such a way that the system is superintegrable exactly when some of the parameters are rational numbers. Most of the constructions to date are for n=2 but cases where n>2 are multiplying rapidly. In this article we organize a large class of such systems, many new, and emphasize the underlying mechanisms which enable this phenomena to occur and to prove superintegrability. In addition to proofs of classical superintegrability we show that the 2D caged anisotropic oscillator and a Stäckel transformed version on the 2-sheet hyperboloid are quantum superintegrable for all rational relative frequencies, and that a deformed 2D Kepler-Coulomb system is quantum superintegrable for all rational values of a parameter k in the potential.
format Article
author Kalnins, E.G.
Kress, J.M.
Willard Miller, Jr.
spellingShingle Kalnins, E.G.
Kress, J.M.
Willard Miller, Jr.
Tools for Verifying Classical and Quantum Superintegrability
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Kalnins, E.G.
Kress, J.M.
Willard Miller, Jr.
author_sort Kalnins, E.G.
title Tools for Verifying Classical and Quantum Superintegrability
title_short Tools for Verifying Classical and Quantum Superintegrability
title_full Tools for Verifying Classical and Quantum Superintegrability
title_fullStr Tools for Verifying Classical and Quantum Superintegrability
title_full_unstemmed Tools for Verifying Classical and Quantum Superintegrability
title_sort tools for verifying classical and quantum superintegrability
publisher Інститут математики НАН України
publishDate 2010
url http://dspace.nbuv.gov.ua/handle/123456789/146503
citation_txt Tools for Verifying Classical and Quantum Superintegrability / E.G. Kalnins, J.M. Kress, Jr. Willard Miller // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 24 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT kalninseg toolsforverifyingclassicalandquantumsuperintegrability
AT kressjm toolsforverifyingclassicalandquantumsuperintegrability
AT willardmillerjr toolsforverifyingclassicalandquantumsuperintegrability
first_indexed 2023-05-20T17:24:41Z
last_indexed 2023-05-20T17:24:41Z
_version_ 1796153229628669952