C-Integrability Test for Discrete Equations via Multiple Scale Expansions

In this paper, we are extending the well-known integrability theorems obtained by multiple scale techniques to the case of linearizable difference equations. As an example, we apply the theory to the case of a differential-difference dispersive equation of the Burgers hierarchy which via a discrete...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Scimiterna, C., Levi, D.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2010
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146506
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:C-Integrability Test for Discrete Equations via Multiple Scale Expansions / C. Scimiterna, D. Levi // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 27 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146506
record_format dspace
spelling irk-123456789-1465062019-02-10T01:24:35Z C-Integrability Test for Discrete Equations via Multiple Scale Expansions Scimiterna, C. Levi, D. In this paper, we are extending the well-known integrability theorems obtained by multiple scale techniques to the case of linearizable difference equations. As an example, we apply the theory to the case of a differential-difference dispersive equation of the Burgers hierarchy which via a discrete Hopf-Cole transformation reduces to a linear differential-difference equation. In this case, the equation satisfies the A₁, A₂ and A₃ linearizability conditions. We then consider its discretization. To get a dispersive equation we substitute the time derivative by its symmetric discretization. When we apply to this nonlinear partial difference equation the multiple scale expansion we find out that the lowest order non-secularity condition is given by a non-integrable nonlinear Schrödinger equation. Thus showing that this discretized Burgers equation is neither linearizable not integrable. 2010 Article C-Integrability Test for Discrete Equations via Multiple Scale Expansions / C. Scimiterna, D. Levi // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 27 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 34K99; 34E13; 37K10; 37J30 DOI:10.3842/SIGMA.2010.070 http://dspace.nbuv.gov.ua/handle/123456789/146506 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper, we are extending the well-known integrability theorems obtained by multiple scale techniques to the case of linearizable difference equations. As an example, we apply the theory to the case of a differential-difference dispersive equation of the Burgers hierarchy which via a discrete Hopf-Cole transformation reduces to a linear differential-difference equation. In this case, the equation satisfies the A₁, A₂ and A₃ linearizability conditions. We then consider its discretization. To get a dispersive equation we substitute the time derivative by its symmetric discretization. When we apply to this nonlinear partial difference equation the multiple scale expansion we find out that the lowest order non-secularity condition is given by a non-integrable nonlinear Schrödinger equation. Thus showing that this discretized Burgers equation is neither linearizable not integrable.
format Article
author Scimiterna, C.
Levi, D.
spellingShingle Scimiterna, C.
Levi, D.
C-Integrability Test for Discrete Equations via Multiple Scale Expansions
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Scimiterna, C.
Levi, D.
author_sort Scimiterna, C.
title C-Integrability Test for Discrete Equations via Multiple Scale Expansions
title_short C-Integrability Test for Discrete Equations via Multiple Scale Expansions
title_full C-Integrability Test for Discrete Equations via Multiple Scale Expansions
title_fullStr C-Integrability Test for Discrete Equations via Multiple Scale Expansions
title_full_unstemmed C-Integrability Test for Discrete Equations via Multiple Scale Expansions
title_sort c-integrability test for discrete equations via multiple scale expansions
publisher Інститут математики НАН України
publishDate 2010
url http://dspace.nbuv.gov.ua/handle/123456789/146506
citation_txt C-Integrability Test for Discrete Equations via Multiple Scale Expansions / C. Scimiterna, D. Levi // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 27 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT scimiternac cintegrabilitytestfordiscreteequationsviamultiplescaleexpansions
AT levid cintegrabilitytestfordiscreteequationsviamultiplescaleexpansions
first_indexed 2023-05-20T17:24:57Z
last_indexed 2023-05-20T17:24:57Z
_version_ 1796153237697462272