Quantum Integrable 1D anyonic Models: Construction through Braided Yang-Baxter Equation
Applying braided Yang-Baxter equation quantum integrable and Bethe ansatz solvable 1D anyonic lattice and field models are constructed. Along with known models we discover novel lattice anyonic and q-anyonic models as well as nonlinear Schrödinger equation (NLS) and the derivative NLS quantum field...
Збережено в:
Дата: | 2010 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2010
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146507 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Quantum Integrable 1D anyonic Models: Construction through Braided Yang-Baxter Equation / A. Kundu // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 16 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146507 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1465072019-02-10T01:24:46Z Quantum Integrable 1D anyonic Models: Construction through Braided Yang-Baxter Equation Kundu, A. Applying braided Yang-Baxter equation quantum integrable and Bethe ansatz solvable 1D anyonic lattice and field models are constructed. Along with known models we discover novel lattice anyonic and q-anyonic models as well as nonlinear Schrödinger equation (NLS) and the derivative NLS quantum field models involving anyonic operators, N-particle sectors of which yield the well known anyon gases, interacting through δ and derivative δ-function potentials. 2010 Article Quantum Integrable 1D anyonic Models: Construction through Braided Yang-Baxter Equation / A. Kundu // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 16 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 16T25; 20F36; 81R12 DOI:10.3842/SIGMA.2010.080 http://dspace.nbuv.gov.ua/handle/123456789/146507 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Applying braided Yang-Baxter equation quantum integrable and Bethe ansatz solvable 1D anyonic lattice and field models are constructed. Along with known models we discover novel lattice anyonic and q-anyonic models as well as nonlinear Schrödinger equation (NLS) and the derivative NLS quantum field models involving anyonic operators, N-particle sectors of which yield the well known anyon gases, interacting through δ and derivative δ-function potentials. |
format |
Article |
author |
Kundu, A. |
spellingShingle |
Kundu, A. Quantum Integrable 1D anyonic Models: Construction through Braided Yang-Baxter Equation Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Kundu, A. |
author_sort |
Kundu, A. |
title |
Quantum Integrable 1D anyonic Models: Construction through Braided Yang-Baxter Equation |
title_short |
Quantum Integrable 1D anyonic Models: Construction through Braided Yang-Baxter Equation |
title_full |
Quantum Integrable 1D anyonic Models: Construction through Braided Yang-Baxter Equation |
title_fullStr |
Quantum Integrable 1D anyonic Models: Construction through Braided Yang-Baxter Equation |
title_full_unstemmed |
Quantum Integrable 1D anyonic Models: Construction through Braided Yang-Baxter Equation |
title_sort |
quantum integrable 1d anyonic models: construction through braided yang-baxter equation |
publisher |
Інститут математики НАН України |
publishDate |
2010 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146507 |
citation_txt |
Quantum Integrable 1D anyonic Models: Construction through Braided Yang-Baxter Equation / A. Kundu // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 16 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT kundua quantumintegrable1danyonicmodelsconstructionthroughbraidedyangbaxterequation |
first_indexed |
2023-05-20T17:24:57Z |
last_indexed |
2023-05-20T17:24:57Z |
_version_ |
1796153237804417024 |