Singular Reduction of Generalized Complex Manifolds

In this paper, we develop results in the direction of an analogue of Sjamaar and Lerman's singular reduction of Hamiltonian symplectic manifolds in the context of reduction of Hamiltonian generalized complex manifolds (in the sense of Lin and Tolman). Specifically, we prove that if a compact Li...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автор: Goldberg, T.E.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2010
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146509
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Singular Reduction of Generalized Complex Manifolds / T.E. Goldberg // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146509
record_format dspace
spelling irk-123456789-1465092019-02-10T01:24:44Z Singular Reduction of Generalized Complex Manifolds Goldberg, T.E. In this paper, we develop results in the direction of an analogue of Sjamaar and Lerman's singular reduction of Hamiltonian symplectic manifolds in the context of reduction of Hamiltonian generalized complex manifolds (in the sense of Lin and Tolman). Specifically, we prove that if a compact Lie group acts on a generalized complex manifold in a Hamiltonian fashion, then the partition of the global quotient by orbit types induces a partition of the Lin-Tolman quotient into generalized complex manifolds. This result holds also for the reduction of Hamiltonian generalized Kähler manifolds. 2010 Article Singular Reduction of Generalized Complex Manifolds / T.E. Goldberg // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 20 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53D20; 53D18; 53C15 DOI:10.3842/SIGMA.2010.081 http://dspace.nbuv.gov.ua/handle/123456789/146509 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper, we develop results in the direction of an analogue of Sjamaar and Lerman's singular reduction of Hamiltonian symplectic manifolds in the context of reduction of Hamiltonian generalized complex manifolds (in the sense of Lin and Tolman). Specifically, we prove that if a compact Lie group acts on a generalized complex manifold in a Hamiltonian fashion, then the partition of the global quotient by orbit types induces a partition of the Lin-Tolman quotient into generalized complex manifolds. This result holds also for the reduction of Hamiltonian generalized Kähler manifolds.
format Article
author Goldberg, T.E.
spellingShingle Goldberg, T.E.
Singular Reduction of Generalized Complex Manifolds
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Goldberg, T.E.
author_sort Goldberg, T.E.
title Singular Reduction of Generalized Complex Manifolds
title_short Singular Reduction of Generalized Complex Manifolds
title_full Singular Reduction of Generalized Complex Manifolds
title_fullStr Singular Reduction of Generalized Complex Manifolds
title_full_unstemmed Singular Reduction of Generalized Complex Manifolds
title_sort singular reduction of generalized complex manifolds
publisher Інститут математики НАН України
publishDate 2010
url http://dspace.nbuv.gov.ua/handle/123456789/146509
citation_txt Singular Reduction of Generalized Complex Manifolds / T.E. Goldberg // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 20 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT goldbergte singularreductionofgeneralizedcomplexmanifolds
first_indexed 2023-05-20T17:24:57Z
last_indexed 2023-05-20T17:24:57Z
_version_ 1796153238016229376