Erlangen Program at Large-1: Geometry of Invariants

This paper presents geometrical foundation for a systematic treatment of three main (elliptic, parabolic and hyperbolic) types of analytic function theories based on the representation theory of SL₂(R) group. We describe here geometries of corresponding domains. The principal rôle is played by Cliff...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автор: Kisil, V.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2010
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146514
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Erlangen Program at Large-1: Geometry of Invariants / V.V. Kisil // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 73 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146514
record_format dspace
spelling irk-123456789-1465142019-02-10T01:25:06Z Erlangen Program at Large-1: Geometry of Invariants Kisil, V.V. This paper presents geometrical foundation for a systematic treatment of three main (elliptic, parabolic and hyperbolic) types of analytic function theories based on the representation theory of SL₂(R) group. We describe here geometries of corresponding domains. The principal rôle is played by Clifford algebras of matching types. In this paper we also generalise the Fillmore-Springer-Cnops construction which describes cycles as points in the extended space. This allows to consider many algebraic and geometric invariants of cycles within the Erlangen program approach. 2010 Article Erlangen Program at Large-1: Geometry of Invariants / V.V. Kisil // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 73 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 30G35; 22E46; 30F45; 32F45 DOI:10.3842/SIGMA.2010.076 http://dspace.nbuv.gov.ua/handle/123456789/146514 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description This paper presents geometrical foundation for a systematic treatment of three main (elliptic, parabolic and hyperbolic) types of analytic function theories based on the representation theory of SL₂(R) group. We describe here geometries of corresponding domains. The principal rôle is played by Clifford algebras of matching types. In this paper we also generalise the Fillmore-Springer-Cnops construction which describes cycles as points in the extended space. This allows to consider many algebraic and geometric invariants of cycles within the Erlangen program approach.
format Article
author Kisil, V.V.
spellingShingle Kisil, V.V.
Erlangen Program at Large-1: Geometry of Invariants
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Kisil, V.V.
author_sort Kisil, V.V.
title Erlangen Program at Large-1: Geometry of Invariants
title_short Erlangen Program at Large-1: Geometry of Invariants
title_full Erlangen Program at Large-1: Geometry of Invariants
title_fullStr Erlangen Program at Large-1: Geometry of Invariants
title_full_unstemmed Erlangen Program at Large-1: Geometry of Invariants
title_sort erlangen program at large-1: geometry of invariants
publisher Інститут математики НАН України
publishDate 2010
url http://dspace.nbuv.gov.ua/handle/123456789/146514
citation_txt Erlangen Program at Large-1: Geometry of Invariants / V.V. Kisil // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 73 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT kisilvv erlangenprogramatlarge1geometryofinvariants
first_indexed 2023-05-20T17:24:58Z
last_indexed 2023-05-20T17:24:58Z
_version_ 1796153238334996480