On a Family of 2-Variable Orthogonal Krawtchouk Polynomials
We give a hypergeometric proof involving a family of 2-variable Krawtchouk polynomials that were obtained earlier by Hoare and Rahman [SIGMA 4 (2008), 089, 18 pages] as a limit of the 9−j symbols of quantum angular momentum theory, and shown to be eigenfunctions of the transition probability kernel...
Збережено в:
Дата: | 2010 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2010
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146521 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On a Family of 2-Variable Orthogonal Krawtchouk Polynomials / F.A. Grünbaum, M. Rahman // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 19 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We give a hypergeometric proof involving a family of 2-variable Krawtchouk polynomials that were obtained earlier by Hoare and Rahman [SIGMA 4 (2008), 089, 18 pages] as a limit of the 9−j symbols of quantum angular momentum theory, and shown to be eigenfunctions of the transition probability kernel corresponding to a ''poker dice'' type probability model. The proof in this paper derives and makes use of the necessary and sufficient conditions of orthogonality in establishing orthogonality as well as indicating their geometrical significance. We also derive a 5-term recurrence relation satisfied by these polynomials. |
---|