Universal Bethe Ansatz and Scalar Products of Bethe Vectors

An integral presentation for the scalar products of nested Bethe vectors for the quantum integrable models associated with the quantum affine algebra Uq(gl₃) is given. This result is obtained in the framework of the universal Bethe ansatz, using presentation of the universal Bethe vectors in terms o...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Belliard, S., Pakuliak, S., Ragoucy, E.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2010
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146527
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Universal Bethe Ansatz and Scalar Products of Bethe Vectors / S. Belliard, S. Pakuliak, E. Ragoucy // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 28 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146527
record_format dspace
spelling irk-123456789-1465272019-02-10T01:25:23Z Universal Bethe Ansatz and Scalar Products of Bethe Vectors Belliard, S. Pakuliak, S. Ragoucy, E. An integral presentation for the scalar products of nested Bethe vectors for the quantum integrable models associated with the quantum affine algebra Uq(gl₃) is given. This result is obtained in the framework of the universal Bethe ansatz, using presentation of the universal Bethe vectors in terms of the total currents of a ''new'' realization of the quantum affine algebra Uq(gl₃). 2010 Article Universal Bethe Ansatz and Scalar Products of Bethe Vectors / S. Belliard, S. Pakuliak, E. Ragoucy // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 28 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B37; 81R50 DOI:10.3842/SIGMA.2010.094 http://dspace.nbuv.gov.ua/handle/123456789/146527 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description An integral presentation for the scalar products of nested Bethe vectors for the quantum integrable models associated with the quantum affine algebra Uq(gl₃) is given. This result is obtained in the framework of the universal Bethe ansatz, using presentation of the universal Bethe vectors in terms of the total currents of a ''new'' realization of the quantum affine algebra Uq(gl₃).
format Article
author Belliard, S.
Pakuliak, S.
Ragoucy, E.
spellingShingle Belliard, S.
Pakuliak, S.
Ragoucy, E.
Universal Bethe Ansatz and Scalar Products of Bethe Vectors
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Belliard, S.
Pakuliak, S.
Ragoucy, E.
author_sort Belliard, S.
title Universal Bethe Ansatz and Scalar Products of Bethe Vectors
title_short Universal Bethe Ansatz and Scalar Products of Bethe Vectors
title_full Universal Bethe Ansatz and Scalar Products of Bethe Vectors
title_fullStr Universal Bethe Ansatz and Scalar Products of Bethe Vectors
title_full_unstemmed Universal Bethe Ansatz and Scalar Products of Bethe Vectors
title_sort universal bethe ansatz and scalar products of bethe vectors
publisher Інститут математики НАН України
publishDate 2010
url http://dspace.nbuv.gov.ua/handle/123456789/146527
citation_txt Universal Bethe Ansatz and Scalar Products of Bethe Vectors / S. Belliard, S. Pakuliak, E. Ragoucy // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 28 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT belliards universalbetheansatzandscalarproductsofbethevectors
AT pakuliaks universalbetheansatzandscalarproductsofbethevectors
AT ragoucye universalbetheansatzandscalarproductsofbethevectors
first_indexed 2023-05-20T17:25:00Z
last_indexed 2023-05-20T17:25:00Z
_version_ 1796153246820073472