Snyder Space-Time: K-Loop and Lie Triple System
Different deformations of the Poincaré symmetries have been identified for various non-commutative spaces (e.g. κ-Minkowski, sl(2,R), Moyal). We present here the deformation of the Poincaré symmetries related to Snyder space-time. The notions of smooth ''K-loop'', a non-associati...
Збережено в:
Дата: | 2010 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2010
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146535 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Snyder Space-Time: K-Loop and Lie Triple System / F. Girelli // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 28 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146535 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1465352019-02-10T01:24:55Z Snyder Space-Time: K-Loop and Lie Triple System Girelli, F. Different deformations of the Poincaré symmetries have been identified for various non-commutative spaces (e.g. κ-Minkowski, sl(2,R), Moyal). We present here the deformation of the Poincaré symmetries related to Snyder space-time. The notions of smooth ''K-loop'', a non-associative generalization of Abelian Lie groups, and its infinitesimal counterpart given by the Lie triple system are the key objects in the construction. 2010 Article Snyder Space-Time: K-Loop and Lie Triple System / F. Girelli // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 28 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17C90; 81T75 DOI:10.3842/SIGMA.2010.074 http://dspace.nbuv.gov.ua/handle/123456789/146535 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Different deformations of the Poincaré symmetries have been identified for various non-commutative spaces (e.g. κ-Minkowski, sl(2,R), Moyal). We present here the deformation of the Poincaré symmetries related to Snyder space-time. The notions of smooth ''K-loop'', a non-associative generalization of Abelian Lie groups, and its infinitesimal counterpart given by the Lie triple system are the key objects in the construction. |
format |
Article |
author |
Girelli, F. |
spellingShingle |
Girelli, F. Snyder Space-Time: K-Loop and Lie Triple System Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Girelli, F. |
author_sort |
Girelli, F. |
title |
Snyder Space-Time: K-Loop and Lie Triple System |
title_short |
Snyder Space-Time: K-Loop and Lie Triple System |
title_full |
Snyder Space-Time: K-Loop and Lie Triple System |
title_fullStr |
Snyder Space-Time: K-Loop and Lie Triple System |
title_full_unstemmed |
Snyder Space-Time: K-Loop and Lie Triple System |
title_sort |
snyder space-time: k-loop and lie triple system |
publisher |
Інститут математики НАН України |
publishDate |
2010 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146535 |
citation_txt |
Snyder Space-Time: K-Loop and Lie Triple System / F. Girelli // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 28 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT girellif snyderspacetimekloopandlietriplesystem |
first_indexed |
2023-05-20T17:25:01Z |
last_indexed |
2023-05-20T17:25:01Z |
_version_ |
1796153239288152064 |