On Certain Wronskians of Multiple Orthogonal Polynomials

We consider determinants of Wronskian type whose entries are multiple orthogonal polynomials associated with a path connecting two multi-indices. By assuming that the weight functions form an algebraic Chebyshev (AT) system, we show that the polynomials represented by the Wronskians keep a constant...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Zhang, L., Filipuk, G.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146536
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On Certain Wronskians of Multiple Orthogonal Polynomials/ L. Zhang, G. Filipuk // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 60 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146536
record_format dspace
spelling irk-123456789-1465362019-02-10T01:24:38Z On Certain Wronskians of Multiple Orthogonal Polynomials Zhang, L. Filipuk, G. We consider determinants of Wronskian type whose entries are multiple orthogonal polynomials associated with a path connecting two multi-indices. By assuming that the weight functions form an algebraic Chebyshev (AT) system, we show that the polynomials represented by the Wronskians keep a constant sign in some cases, while in some other cases oscillatory behavior appears, which generalizes classical results for orthogonal polynomials due to Karlin and Szegő. There are two applications of our results. The first application arises from the observation that the m-th moment of the average characteristic polynomials for multiple orthogonal polynomial ensembles can be expressed as a Wronskian of the type II multiple orthogonal polynomials. Hence, it is straightforward to obtain the distinct behavior of the moments for odd and even m in a special multiple orthogonal ensemble - the AT ensemble. As the second application, we derive some Turán type inequalities for multiple Hermite and multiple Laguerre polynomials (of two kinds). Finally, we study numerically the geometric configuration of zeros for the Wronskians of these multiple orthogonal polynomials. We observe that the zeros have regular configurations in the complex plane, which might be of independent interest. 2014 Article On Certain Wronskians of Multiple Orthogonal Polynomials/ L. Zhang, G. Filipuk // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 60 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 05E35; 11C20; 12D10; 26D05; 41A50 DOI:10.3842/SIGMA.2014.103 http://dspace.nbuv.gov.ua/handle/123456789/146536 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We consider determinants of Wronskian type whose entries are multiple orthogonal polynomials associated with a path connecting two multi-indices. By assuming that the weight functions form an algebraic Chebyshev (AT) system, we show that the polynomials represented by the Wronskians keep a constant sign in some cases, while in some other cases oscillatory behavior appears, which generalizes classical results for orthogonal polynomials due to Karlin and Szegő. There are two applications of our results. The first application arises from the observation that the m-th moment of the average characteristic polynomials for multiple orthogonal polynomial ensembles can be expressed as a Wronskian of the type II multiple orthogonal polynomials. Hence, it is straightforward to obtain the distinct behavior of the moments for odd and even m in a special multiple orthogonal ensemble - the AT ensemble. As the second application, we derive some Turán type inequalities for multiple Hermite and multiple Laguerre polynomials (of two kinds). Finally, we study numerically the geometric configuration of zeros for the Wronskians of these multiple orthogonal polynomials. We observe that the zeros have regular configurations in the complex plane, which might be of independent interest.
format Article
author Zhang, L.
Filipuk, G.
spellingShingle Zhang, L.
Filipuk, G.
On Certain Wronskians of Multiple Orthogonal Polynomials
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Zhang, L.
Filipuk, G.
author_sort Zhang, L.
title On Certain Wronskians of Multiple Orthogonal Polynomials
title_short On Certain Wronskians of Multiple Orthogonal Polynomials
title_full On Certain Wronskians of Multiple Orthogonal Polynomials
title_fullStr On Certain Wronskians of Multiple Orthogonal Polynomials
title_full_unstemmed On Certain Wronskians of Multiple Orthogonal Polynomials
title_sort on certain wronskians of multiple orthogonal polynomials
publisher Інститут математики НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/146536
citation_txt On Certain Wronskians of Multiple Orthogonal Polynomials/ L. Zhang, G. Filipuk // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 60 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT zhangl oncertainwronskiansofmultipleorthogonalpolynomials
AT filipukg oncertainwronskiansofmultipleorthogonalpolynomials
first_indexed 2023-05-20T17:25:02Z
last_indexed 2023-05-20T17:25:02Z
_version_ 1796153239393009664