κ-Deformed Phase Space, Hopf Algebroid and Twisting

Hopf algebroid structures on the Weyl algebra (phase space) are presented. We define the coproduct for the Weyl generators from Leibniz rule. The codomain of the coproduct is modified in order to obtain an algebra structure. We use the dual base to construct the target map and antipode. The notion o...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Jurić, T., Kovačević, D., Meljanac, S.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146538
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:κ-Deformed Phase Space, Hopf Algebroid and Twisting / T. Jurić, D. Kovačević, S. Meljanac // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 65 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146538
record_format dspace
spelling irk-123456789-1465382019-02-10T01:24:45Z κ-Deformed Phase Space, Hopf Algebroid and Twisting Jurić, T. Kovačević, D. Meljanac, S. Hopf algebroid structures on the Weyl algebra (phase space) are presented. We define the coproduct for the Weyl generators from Leibniz rule. The codomain of the coproduct is modified in order to obtain an algebra structure. We use the dual base to construct the target map and antipode. The notion of twist is analyzed for κ-deformed phase space in Hopf algebroid setting. It is outlined how the twist in the Hopf algebroid setting reproduces the full Hopf algebra structure of κ-Poincaré algebra. Several examples of realizations are worked out in details. 2014 Article κ-Deformed Phase Space, Hopf Algebroid and Twisting / T. Jurić, D. Kovačević, S. Meljanac // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 65 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 81R60; 17B37; 81R50 DOI:10.3842/SIGMA.2014.106 http://dspace.nbuv.gov.ua/handle/123456789/146538 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Hopf algebroid structures on the Weyl algebra (phase space) are presented. We define the coproduct for the Weyl generators from Leibniz rule. The codomain of the coproduct is modified in order to obtain an algebra structure. We use the dual base to construct the target map and antipode. The notion of twist is analyzed for κ-deformed phase space in Hopf algebroid setting. It is outlined how the twist in the Hopf algebroid setting reproduces the full Hopf algebra structure of κ-Poincaré algebra. Several examples of realizations are worked out in details.
format Article
author Jurić, T.
Kovačević, D.
Meljanac, S.
spellingShingle Jurić, T.
Kovačević, D.
Meljanac, S.
κ-Deformed Phase Space, Hopf Algebroid and Twisting
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Jurić, T.
Kovačević, D.
Meljanac, S.
author_sort Jurić, T.
title κ-Deformed Phase Space, Hopf Algebroid and Twisting
title_short κ-Deformed Phase Space, Hopf Algebroid and Twisting
title_full κ-Deformed Phase Space, Hopf Algebroid and Twisting
title_fullStr κ-Deformed Phase Space, Hopf Algebroid and Twisting
title_full_unstemmed κ-Deformed Phase Space, Hopf Algebroid and Twisting
title_sort κ-deformed phase space, hopf algebroid and twisting
publisher Інститут математики НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/146538
citation_txt κ-Deformed Phase Space, Hopf Algebroid and Twisting / T. Jurić, D. Kovačević, S. Meljanac // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 65 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT jurict kdeformedphasespacehopfalgebroidandtwisting
AT kovacevicd kdeformedphasespacehopfalgebroidandtwisting
AT meljanacs kdeformedphasespacehopfalgebroidandtwisting
first_indexed 2023-05-20T17:25:02Z
last_indexed 2023-05-20T17:25:02Z
_version_ 1796153239605870592