κ-Deformed Phase Space, Hopf Algebroid and Twisting
Hopf algebroid structures on the Weyl algebra (phase space) are presented. We define the coproduct for the Weyl generators from Leibniz rule. The codomain of the coproduct is modified in order to obtain an algebra structure. We use the dual base to construct the target map and antipode. The notion o...
Збережено в:
Дата: | 2014 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2014
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146538 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | κ-Deformed Phase Space, Hopf Algebroid and Twisting / T. Jurić, D. Kovačević, S. Meljanac // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 65 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146538 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1465382019-02-10T01:24:45Z κ-Deformed Phase Space, Hopf Algebroid and Twisting Jurić, T. Kovačević, D. Meljanac, S. Hopf algebroid structures on the Weyl algebra (phase space) are presented. We define the coproduct for the Weyl generators from Leibniz rule. The codomain of the coproduct is modified in order to obtain an algebra structure. We use the dual base to construct the target map and antipode. The notion of twist is analyzed for κ-deformed phase space in Hopf algebroid setting. It is outlined how the twist in the Hopf algebroid setting reproduces the full Hopf algebra structure of κ-Poincaré algebra. Several examples of realizations are worked out in details. 2014 Article κ-Deformed Phase Space, Hopf Algebroid and Twisting / T. Jurić, D. Kovačević, S. Meljanac // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 65 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 81R60; 17B37; 81R50 DOI:10.3842/SIGMA.2014.106 http://dspace.nbuv.gov.ua/handle/123456789/146538 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Hopf algebroid structures on the Weyl algebra (phase space) are presented. We define the coproduct for the Weyl generators from Leibniz rule. The codomain of the coproduct is modified in order to obtain an algebra structure. We use the dual base to construct the target map and antipode. The notion of twist is analyzed for κ-deformed phase space in Hopf algebroid setting. It is outlined how the twist in the Hopf algebroid setting reproduces the full Hopf algebra structure of κ-Poincaré algebra. Several examples of realizations are worked out in details. |
format |
Article |
author |
Jurić, T. Kovačević, D. Meljanac, S. |
spellingShingle |
Jurić, T. Kovačević, D. Meljanac, S. κ-Deformed Phase Space, Hopf Algebroid and Twisting Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Jurić, T. Kovačević, D. Meljanac, S. |
author_sort |
Jurić, T. |
title |
κ-Deformed Phase Space, Hopf Algebroid and Twisting |
title_short |
κ-Deformed Phase Space, Hopf Algebroid and Twisting |
title_full |
κ-Deformed Phase Space, Hopf Algebroid and Twisting |
title_fullStr |
κ-Deformed Phase Space, Hopf Algebroid and Twisting |
title_full_unstemmed |
κ-Deformed Phase Space, Hopf Algebroid and Twisting |
title_sort |
κ-deformed phase space, hopf algebroid and twisting |
publisher |
Інститут математики НАН України |
publishDate |
2014 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146538 |
citation_txt |
κ-Deformed Phase Space, Hopf Algebroid and Twisting / T. Jurić, D. Kovačević, S. Meljanac // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 65 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT jurict kdeformedphasespacehopfalgebroidandtwisting AT kovacevicd kdeformedphasespacehopfalgebroidandtwisting AT meljanacs kdeformedphasespacehopfalgebroidandtwisting |
first_indexed |
2023-05-20T17:25:02Z |
last_indexed |
2023-05-20T17:25:02Z |
_version_ |
1796153239605870592 |