2025-02-23T18:42:49-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-146539%22&qt=morelikethis&rows=5
2025-02-23T18:42:49-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-146539%22&qt=morelikethis&rows=5
2025-02-23T18:42:49-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T18:42:49-05:00 DEBUG: Deserialized SOLR response
Everywhere Equivalent 3-Braids
A knot (or link) diagram is said to be everywhere equivalent if all the diagrams obtained by switching one crossing represent the same knot (or link). We classify such diagrams of a closed 3-braid.
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2014
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/146539 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
irk-123456789-146539 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1465392019-02-10T01:23:40Z Everywhere Equivalent 3-Braids Stoimenow, A. A knot (or link) diagram is said to be everywhere equivalent if all the diagrams obtained by switching one crossing represent the same knot (or link). We classify such diagrams of a closed 3-braid. 2014 Article Everywhere Equivalent 3-Braids/ A. Stoimenow // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 23 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 57M25; 20F36; 20E45; 20C08 DOI:10.3842/SIGMA.2014.105 http://dspace.nbuv.gov.ua/handle/123456789/146539 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A knot (or link) diagram is said to be everywhere equivalent if all the diagrams obtained by switching one crossing represent the same knot (or link). We classify such diagrams of a closed 3-braid. |
format |
Article |
author |
Stoimenow, A. |
spellingShingle |
Stoimenow, A. Everywhere Equivalent 3-Braids Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Stoimenow, A. |
author_sort |
Stoimenow, A. |
title |
Everywhere Equivalent 3-Braids |
title_short |
Everywhere Equivalent 3-Braids |
title_full |
Everywhere Equivalent 3-Braids |
title_fullStr |
Everywhere Equivalent 3-Braids |
title_full_unstemmed |
Everywhere Equivalent 3-Braids |
title_sort |
everywhere equivalent 3-braids |
publisher |
Інститут математики НАН України |
publishDate |
2014 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146539 |
citation_txt |
Everywhere Equivalent 3-Braids/ A. Stoimenow // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 23 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT stoimenowa everywhereequivalent3braids |
first_indexed |
2023-05-20T17:25:02Z |
last_indexed |
2023-05-20T17:25:02Z |
_version_ |
1796153239710728192 |