Everywhere Equivalent 3-Braids
A knot (or link) diagram is said to be everywhere equivalent if all the diagrams obtained by switching one crossing represent the same knot (or link). We classify such diagrams of a closed 3-braid.
Збережено в:
Дата: | 2014 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2014
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146539 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Everywhere Equivalent 3-Braids/ A. Stoimenow // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 23 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146539 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1465392019-02-10T01:23:40Z Everywhere Equivalent 3-Braids Stoimenow, A. A knot (or link) diagram is said to be everywhere equivalent if all the diagrams obtained by switching one crossing represent the same knot (or link). We classify such diagrams of a closed 3-braid. 2014 Article Everywhere Equivalent 3-Braids/ A. Stoimenow // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 23 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 57M25; 20F36; 20E45; 20C08 DOI:10.3842/SIGMA.2014.105 http://dspace.nbuv.gov.ua/handle/123456789/146539 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A knot (or link) diagram is said to be everywhere equivalent if all the diagrams obtained by switching one crossing represent the same knot (or link). We classify such diagrams of a closed 3-braid. |
format |
Article |
author |
Stoimenow, A. |
spellingShingle |
Stoimenow, A. Everywhere Equivalent 3-Braids Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Stoimenow, A. |
author_sort |
Stoimenow, A. |
title |
Everywhere Equivalent 3-Braids |
title_short |
Everywhere Equivalent 3-Braids |
title_full |
Everywhere Equivalent 3-Braids |
title_fullStr |
Everywhere Equivalent 3-Braids |
title_full_unstemmed |
Everywhere Equivalent 3-Braids |
title_sort |
everywhere equivalent 3-braids |
publisher |
Інститут математики НАН України |
publishDate |
2014 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146539 |
citation_txt |
Everywhere Equivalent 3-Braids/ A. Stoimenow // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 23 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT stoimenowa everywhereequivalent3braids |
first_indexed |
2023-05-20T17:25:02Z |
last_indexed |
2023-05-20T17:25:02Z |
_version_ |
1796153239710728192 |