Everywhere Equivalent 3-Braids

A knot (or link) diagram is said to be everywhere equivalent if all the diagrams obtained by switching one crossing represent the same knot (or link). We classify such diagrams of a closed 3-braid.

Збережено в:
Бібліографічні деталі
Дата:2014
Автор: Stoimenow, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146539
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Everywhere Equivalent 3-Braids/ A. Stoimenow // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 23 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146539
record_format dspace
spelling irk-123456789-1465392019-02-10T01:23:40Z Everywhere Equivalent 3-Braids Stoimenow, A. A knot (or link) diagram is said to be everywhere equivalent if all the diagrams obtained by switching one crossing represent the same knot (or link). We classify such diagrams of a closed 3-braid. 2014 Article Everywhere Equivalent 3-Braids/ A. Stoimenow // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 23 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 57M25; 20F36; 20E45; 20C08 DOI:10.3842/SIGMA.2014.105 http://dspace.nbuv.gov.ua/handle/123456789/146539 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A knot (or link) diagram is said to be everywhere equivalent if all the diagrams obtained by switching one crossing represent the same knot (or link). We classify such diagrams of a closed 3-braid.
format Article
author Stoimenow, A.
spellingShingle Stoimenow, A.
Everywhere Equivalent 3-Braids
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Stoimenow, A.
author_sort Stoimenow, A.
title Everywhere Equivalent 3-Braids
title_short Everywhere Equivalent 3-Braids
title_full Everywhere Equivalent 3-Braids
title_fullStr Everywhere Equivalent 3-Braids
title_full_unstemmed Everywhere Equivalent 3-Braids
title_sort everywhere equivalent 3-braids
publisher Інститут математики НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/146539
citation_txt Everywhere Equivalent 3-Braids/ A. Stoimenow // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 23 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT stoimenowa everywhereequivalent3braids
first_indexed 2023-05-20T17:25:02Z
last_indexed 2023-05-20T17:25:02Z
_version_ 1796153239710728192