Who's Afraid of the Hill Boundary?

The Jacobi-Maupertuis metric allows one to reformulate Newton's equations as geodesic equations for a Riemannian metric which degenerates at the Hill boundary. We prove that a JM geodesic which comes sufficiently close to a regular point of the boundary contains pairs of conjugate points close...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автор: Montgomery, R.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146540
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Who's Afraid of the Hill Boundary?/ R. Montgomery // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146540
record_format dspace
spelling irk-123456789-1465402019-02-10T01:25:02Z Who's Afraid of the Hill Boundary? Montgomery, R. The Jacobi-Maupertuis metric allows one to reformulate Newton's equations as geodesic equations for a Riemannian metric which degenerates at the Hill boundary. We prove that a JM geodesic which comes sufficiently close to a regular point of the boundary contains pairs of conjugate points close to the boundary. We prove the conjugate locus of any point near enough to the boundary is a hypersurface tangent to the boundary. Our method of proof is to reduce analysis of geodesics near the boundary to that of solutions to Newton's equations in the simplest model case: a constant force. This model case is equivalent to the beginning physics problem of throwing balls upward from a fixed point at fixed speeds and describing the resulting arcs, see Fig. 2. 2014 Article Who's Afraid of the Hill Boundary?/ R. Montgomery // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 8 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 37J50; 58E10; 70H99; 37J45; 53B50 DOI:10.3842/SIGMA.2014.101 http://dspace.nbuv.gov.ua/handle/123456789/146540 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The Jacobi-Maupertuis metric allows one to reformulate Newton's equations as geodesic equations for a Riemannian metric which degenerates at the Hill boundary. We prove that a JM geodesic which comes sufficiently close to a regular point of the boundary contains pairs of conjugate points close to the boundary. We prove the conjugate locus of any point near enough to the boundary is a hypersurface tangent to the boundary. Our method of proof is to reduce analysis of geodesics near the boundary to that of solutions to Newton's equations in the simplest model case: a constant force. This model case is equivalent to the beginning physics problem of throwing balls upward from a fixed point at fixed speeds and describing the resulting arcs, see Fig. 2.
format Article
author Montgomery, R.
spellingShingle Montgomery, R.
Who's Afraid of the Hill Boundary?
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Montgomery, R.
author_sort Montgomery, R.
title Who's Afraid of the Hill Boundary?
title_short Who's Afraid of the Hill Boundary?
title_full Who's Afraid of the Hill Boundary?
title_fullStr Who's Afraid of the Hill Boundary?
title_full_unstemmed Who's Afraid of the Hill Boundary?
title_sort who's afraid of the hill boundary?
publisher Інститут математики НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/146540
citation_txt Who's Afraid of the Hill Boundary?/ R. Montgomery // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 8 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT montgomeryr whosafraidofthehillboundary
first_indexed 2023-05-20T17:25:02Z
last_indexed 2023-05-20T17:25:02Z
_version_ 1796153239815585792