Selective Categories and Linear Canonical Relations

A construction of Wehrheim and Woodward circumvents the problem that compositions of smooth canonical relations are not always smooth, building a category suitable for functorial quantization. To apply their construction to more examples, we introduce a notion of highly selective category, in which...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Li-Bland, D., Weinstein, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146541
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Selective Categories and Linear Canonical Relations / D. Li-Bland, A. Weinstein // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 23 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146541
record_format dspace
spelling irk-123456789-1465412019-02-10T01:25:08Z Selective Categories and Linear Canonical Relations Li-Bland, D. Weinstein, A. A construction of Wehrheim and Woodward circumvents the problem that compositions of smooth canonical relations are not always smooth, building a category suitable for functorial quantization. To apply their construction to more examples, we introduce a notion of highly selective category, in which only certain morphisms and certain pairs of these morphisms are ''good''. We then apply this notion to the category SLREL of linear canonical relations and the result WW(SLREL) of our version of the WW construction, identifying the morphisms in the latter with pairs (L,k) consisting of a linear canonical relation and a nonnegative integer. We put a topology on this category of indexed linear canonical relations for which composition is continuous, unlike the composition in SLREL itself. Subsequent papers will consider this category from the viewpoint of derived geometry and will concern quantum counterparts. 2014 Article Selective Categories and Linear Canonical Relations / D. Li-Bland, A. Weinstein // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 23 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53D50; 18F99; 81S10 DOI:10.3842/SIGMA.2014.100 http://dspace.nbuv.gov.ua/handle/123456789/146541 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A construction of Wehrheim and Woodward circumvents the problem that compositions of smooth canonical relations are not always smooth, building a category suitable for functorial quantization. To apply their construction to more examples, we introduce a notion of highly selective category, in which only certain morphisms and certain pairs of these morphisms are ''good''. We then apply this notion to the category SLREL of linear canonical relations and the result WW(SLREL) of our version of the WW construction, identifying the morphisms in the latter with pairs (L,k) consisting of a linear canonical relation and a nonnegative integer. We put a topology on this category of indexed linear canonical relations for which composition is continuous, unlike the composition in SLREL itself. Subsequent papers will consider this category from the viewpoint of derived geometry and will concern quantum counterparts.
format Article
author Li-Bland, D.
Weinstein, A.
spellingShingle Li-Bland, D.
Weinstein, A.
Selective Categories and Linear Canonical Relations
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Li-Bland, D.
Weinstein, A.
author_sort Li-Bland, D.
title Selective Categories and Linear Canonical Relations
title_short Selective Categories and Linear Canonical Relations
title_full Selective Categories and Linear Canonical Relations
title_fullStr Selective Categories and Linear Canonical Relations
title_full_unstemmed Selective Categories and Linear Canonical Relations
title_sort selective categories and linear canonical relations
publisher Інститут математики НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/146541
citation_txt Selective Categories and Linear Canonical Relations / D. Li-Bland, A. Weinstein // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 23 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT liblandd selectivecategoriesandlinearcanonicalrelations
AT weinsteina selectivecategoriesandlinearcanonicalrelations
first_indexed 2023-05-20T17:25:02Z
last_indexed 2023-05-20T17:25:02Z
_version_ 1796153239921491968