Quantum Dimension and Quantum Projective Spaces

We show that the family of spectral triples for quantum projective spaces introduced by D'Andrea and Dąbrowski, which have spectral dimension equal to zero, can be reconsidered as modular spectral triples by taking into account the action of the element K₂ρ or its inverse. The spectral dimensio...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автор: Matassa, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146544
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Quantum Dimension and Quantum Projective Spaces / M. Matassa // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 22 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146544
record_format dspace
spelling irk-123456789-1465442019-02-10T01:24:37Z Quantum Dimension and Quantum Projective Spaces Matassa, M. We show that the family of spectral triples for quantum projective spaces introduced by D'Andrea and Dąbrowski, which have spectral dimension equal to zero, can be reconsidered as modular spectral triples by taking into account the action of the element K₂ρ or its inverse. The spectral dimension computed in this sense coincides with the dimension of the classical projective spaces. The connection with the well known notion of quantum dimension of quantum group theory is pointed out. 2014 Article Quantum Dimension and Quantum Projective Spaces / M. Matassa // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 22 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 58J42; 58B32; 46L87 DOI:10.3842/SIGMA.2014.097 http://dspace.nbuv.gov.ua/handle/123456789/146544 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We show that the family of spectral triples for quantum projective spaces introduced by D'Andrea and Dąbrowski, which have spectral dimension equal to zero, can be reconsidered as modular spectral triples by taking into account the action of the element K₂ρ or its inverse. The spectral dimension computed in this sense coincides with the dimension of the classical projective spaces. The connection with the well known notion of quantum dimension of quantum group theory is pointed out.
format Article
author Matassa, M.
spellingShingle Matassa, M.
Quantum Dimension and Quantum Projective Spaces
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Matassa, M.
author_sort Matassa, M.
title Quantum Dimension and Quantum Projective Spaces
title_short Quantum Dimension and Quantum Projective Spaces
title_full Quantum Dimension and Quantum Projective Spaces
title_fullStr Quantum Dimension and Quantum Projective Spaces
title_full_unstemmed Quantum Dimension and Quantum Projective Spaces
title_sort quantum dimension and quantum projective spaces
publisher Інститут математики НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/146544
citation_txt Quantum Dimension and Quantum Projective Spaces / M. Matassa // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 22 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT matassam quantumdimensionandquantumprojectivespaces
first_indexed 2023-05-20T17:25:03Z
last_indexed 2023-05-20T17:25:03Z
_version_ 1796153240236064768