Quantum Dimension and Quantum Projective Spaces
We show that the family of spectral triples for quantum projective spaces introduced by D'Andrea and Dąbrowski, which have spectral dimension equal to zero, can be reconsidered as modular spectral triples by taking into account the action of the element K₂ρ or its inverse. The spectral dimensio...
Збережено в:
Дата: | 2014 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2014
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146544 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Quantum Dimension and Quantum Projective Spaces / M. Matassa // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 22 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146544 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1465442019-02-10T01:24:37Z Quantum Dimension and Quantum Projective Spaces Matassa, M. We show that the family of spectral triples for quantum projective spaces introduced by D'Andrea and Dąbrowski, which have spectral dimension equal to zero, can be reconsidered as modular spectral triples by taking into account the action of the element K₂ρ or its inverse. The spectral dimension computed in this sense coincides with the dimension of the classical projective spaces. The connection with the well known notion of quantum dimension of quantum group theory is pointed out. 2014 Article Quantum Dimension and Quantum Projective Spaces / M. Matassa // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 22 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 58J42; 58B32; 46L87 DOI:10.3842/SIGMA.2014.097 http://dspace.nbuv.gov.ua/handle/123456789/146544 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We show that the family of spectral triples for quantum projective spaces introduced by D'Andrea and Dąbrowski, which have spectral dimension equal to zero, can be reconsidered as modular spectral triples by taking into account the action of the element K₂ρ or its inverse. The spectral dimension computed in this sense coincides with the dimension of the classical projective spaces. The connection with the well known notion of quantum dimension of quantum group theory is pointed out. |
format |
Article |
author |
Matassa, M. |
spellingShingle |
Matassa, M. Quantum Dimension and Quantum Projective Spaces Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Matassa, M. |
author_sort |
Matassa, M. |
title |
Quantum Dimension and Quantum Projective Spaces |
title_short |
Quantum Dimension and Quantum Projective Spaces |
title_full |
Quantum Dimension and Quantum Projective Spaces |
title_fullStr |
Quantum Dimension and Quantum Projective Spaces |
title_full_unstemmed |
Quantum Dimension and Quantum Projective Spaces |
title_sort |
quantum dimension and quantum projective spaces |
publisher |
Інститут математики НАН України |
publishDate |
2014 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146544 |
citation_txt |
Quantum Dimension and Quantum Projective Spaces / M. Matassa // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 22 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT matassam quantumdimensionandquantumprojectivespaces |
first_indexed |
2023-05-20T17:25:03Z |
last_indexed |
2023-05-20T17:25:03Z |
_version_ |
1796153240236064768 |