Invariant Poisson Realizations and the Averaging of Dirac Structures
We describe an averaging procedure on a Dirac manifold, with respect to a class of compatible actions of a compact Lie group. Some averaging theorems on the existence of invariant realizations of Poisson structures around (singular) symplectic leaves are derived. We show that the construction of cou...
Збережено в:
Дата: | 2014 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2014
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146597 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Invariant Poisson Realizations and the Averaging of Dirac Structures / J.A. Vallejo, Y. Vorobiev // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 29 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We describe an averaging procedure on a Dirac manifold, with respect to a class of compatible actions of a compact Lie group. Some averaging theorems on the existence of invariant realizations of Poisson structures around (singular) symplectic leaves are derived. We show that the construction of coupling Dirac structures (invariant with respect to locally Hamiltonian group actions) on a Poisson foliation is related with a special class of exact gauge transformations. |
---|